Supporting Information

Comparison of NiO_x thin film deposited by spincoating or thermal evaporationfor applicationas a hole transport layer of perovskite solar cells

Su-Kyung Kim^{a,b}, Hae-Jun Seok^a, Do-Hyeong Kim^b, Dong-Hyeok Choi^{a,b}, Seung-Ju Nam^c, Suk-Cheol Kim^{*b}, and Han-Ki Kim^{*a}

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

^bKorea Electric Power Researc Institute, Deajeon, Republic of Korea.

^cSchool of Mechanical Engineering, Chungnam National University, Deajeon, Republic of Korea.

^a <u>E-mail: hankikim@skku.edu</u> Fax: +82-31-201-2462; Tel: +82-31-205-2462 ^b <u>E-mail: ksc5351@kepco.co.kr</u> Fax: +82-61-345-3047; Tel: +82-61-345-3010

Fig. S1 J-V curves of perovskite solar cells with thermal-NiO_x according to the different thickness of thermal NiO_x.

Fig. S2 Contact angles of (a) the spin-NiO_x and (b) the thermal-NiO_x for perovskite precursor solution.

Fig. S3 Forward and reverse J-V curves of the best performing PSCs with each of thermal-NiO_x and spin-NiO_x.

Fig. S4 Optical transmission spectra of spin-NiO_x or thermal-NiO_x on ITO/Glass and ITO/Glass at 200~800nm wavelength.