Electronic Supplementary Information (ESI)

A new cobalt(II) meso-porphyrin: Synthesis, characterization, electric property and application in catalytic degradation of dyes

Nesrine Amiri^{a, *}, Mouhieddinne Guergueb^a, Maged S. Al-Fakeh^b, Marwa Bourguiba^{c,d} and Habib Nasri^a

^a Laboratory of Physical Chemistry of Materials, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia.

^b Department of Chemistry, Faculty of Science, Qassim University, Saudi Arabia. ^c Applied Mechanics and Systems Research Laboratory (LASMAP-EPT), polytechnic school, La Marsa, University of carthage, Tunisia. ^d Faculty of science of Tunis, University of Tunis el manar, Tunisia.

Table of contents

No.	Contents	Pg No.
1	Scheme S1: Main chemical preparation steps.	2
2	Table S1: UV/Vis data of several free base <i>meso</i> -porphyrins, H_2TMAPP (1), Co ^{II} TMAPP (2) and a selection of cobalt <i>meso</i> -metalloporphyrins in dichloromethane.	3
3	Table S2: Electrochemical data for H ₂ TMAPP (1), $[Co^{II}(TMAPP)]$ (2) and a selection of <i>meso</i> -porphyrins and Co(II) <i>meso</i> -metalloporphyrins. All data are obtained from voltammograms recorded in dichloromethane.	4
4	Fig. S1: IR spectrum of H_2 TMAPP (1).	5
5	Fig. S2: IR spectrum of Co ^{II} TMAPP (2).	5
6	Fig. S3. ¹ HNMR spectrum of H_2 TMAPP (1).	6
7	Fig. S4. ¹ HNMR spectrum of Co ^{II} TMAPP (2).	6
8	Fig. S5. Positive MALDI-TOF mass spectrum of H_2 TMAPP (1).	7
9	Fig. S6. Positive MALDI-TOF mass spectrum of [Co ^{II} (TMAPP)] (2).	7
10	Fig. S7. FT-IR spectra of [Co ^{II} (TMAPP)]: (a) before degradation, (b) after degradation of MB, and (c) after degradation of CV.	8
11	References	9

Scheme S1. Main chemical preparation steps.

Compound	Soret band		Q bands		[ref]					
	λ [nm] (log ε)	λ [nm] (log ε)								
Meso-porphyrins										
H₂TPP	416 (6.10)	513 (5.70)	550 (4.36)	590 (4.24)	646 (4.19)	[1]				
H₂TTP	420 (5.95)	515 (5.82)	555 (4.28)	595 (4.17)	650 (4.10)	[1]				
H ₂ TBrPP	419 (6.58)	515 (5.24)	549 (4.93)	590 (4.77)	648 (4.68)	[2]				
H₂TPBP	419 (5.90)	515 (4.46)	551 (4.13)	590 (3.94)	646 (3.84)	[3]				
H₂Pp	421	517	553	592	648	[4]				
H ₂ TMAPP	425 (5.92)	522(5.67)	550 (4.32)	597 (4.15)	653 (3.98)	this work				
		Co(II)-meso-po	orphyrins							
[Co ^{II} (TPP)]	412	528				[5]				
[Co ^{II} (TpivPP)]	412	524				[6]				
[Co ^{II} (TPBP)]	412 (6.07)	528 (5.58)				[7]				
[Co(II)(Pp)]	414	531				[4]				
[Co ^{II} (TMAPP)]	415 (5.85)	539 (5.49)				this work				

Table S1: UV/Vis data of several free base meso-porphyrins, H_2TMAPP (1), Co^{II}TMAPP (2) and a selection of cobalt *meso*-metalloporphyrins in dichloromethane.

	Oxidations				Reductions			
	1^{st} Porph oxid. (O1,R1) $E_{1/2}^{d}$	1^{st} 2^{nd} Porph oxid. Porph oxid. (O1,R1) (O2,R2) $E_{1/2}^{d}$ $E_{1/2}$	3 rd Porph oxid. (O3,R3) E _{1/2}	Oxid.Co(II)/ Co(III) (MO2) E _{1/2}	1 st Porph red. (R4,O4) E _{1/2}	2 nd Porph red. (R5,O5) E _{1/2}	Red Co(II)/ Co(I) (MR1 ^b ,MO1 ^c) E _{1/2}	Ref.
H ₂ TPP	1.02	1.26	_	_	-1.20	-1.55	_	[8]
H₂TMPP	1.02	1.19	1.67°	-	-1.19	-1.52	—	[9]
H₂TCIPP	1.00	1.23	1.53	-	-1.09	-1.41	_	[9]
H₂TMAPP	1.15	1.46	1.66	-	-1.08	-1.41	—	This work
[Co"(TPP)]	1.16	—	_	0.98	-1.40 ^e	—	-0.83	[10]
[Co"(TPP)]	0.97	_	_	0.78	_	—	-0.85	[11]
[Co"(TPP)]	0.91	_	_	0.75	_	—	_	[12]
[Co"(TCIPP)]	1.00	1.26	1.85	0.60 ^c	-1.40	—	-0.88	[9]
[Co"(TMPP)]	0.93	1.20	_	0.70 ^c	-1.36	_	-0.70	[9]
[Co ^{II} (TMAPP)]	1.08	1.29	_	0.61	-1.38	_	-0.93	This work

Table S2. Electrochemical data ^a for H_2 TMAPP, [Co^{II}(TMAPP)] and a selection of *meso*-porphyrins and Co(II) *meso*-metalloporphyrins. All data are obtained from voltammograms recorded in dichloromethane.

^a The potentials are reported versus SCE. ^b MR Metal Reduction. ^c MO Metal Oxidation. ^d E_{1/2} half wave potential. ^e Irreversible wave.

Fig. S2. IR spectrum of (2).

Fig. S3. ¹HNMR spectrum of H_2 TMAPP (1).

Fig. S4. ¹HNMR spectrum of Co^{II}TMAPP (2).

Fig. S6. Positive MALDI-TOF mass spectrum of [Co^{II}(TMAPP)] (2).

Fig. S6. FT-IR spectra of [Co^{II}(TMAPP)]: (a) before degradation, (b) after degradation of MB, and (c) after degradation of CV.

References

- Z. Denden, K. Ezzayani, E. Saint-Aman, F. Loiseau, S. Najmudin, C. Bonifácio, J.-C. Daran and H. Nasri, *Eur. J. Inorg. Chem.* 2015,15, 2596-2610.
- [2]. N. Amiri, F. Ben Taheur, S. Chevreux, E. Wenger, G. Lemercier and H. Nasri, *Tetrahedron* 2017, 73, 7011-7016.
- [3]. N. Amiri, M. Hajji, F. Ben Taheur, S. Chevreux, T. Roisnel, G. Lemercier and H. Nasri, J. Solid State Chem. 2018, 258, 477–484.
- [4]. Y. X. Du, Z. Q. Zhang, Y. H. Yao and J. Li, Inorg. Chem. Commun. 2016, 64, 19–22.
- [5]. Y. Belghith, A. Mansour, J.-C. Daran and H. Nasri, Open J Inorg Chem. 2012, 2, 81-87.
- [6]. A. Mansour, Y. Belghith, M. S. Belkhiria, A. Bujaczb, V. Gue'rineau and H. Nasri, J. Porphyrins Phthalocyanines 2013, 17, 1094–1103.
- [7]. N. Amiri, S. Nouir, M. Hajji, T. Roisnel, T. Guerfel, G. Simonneaux and H. Nasri, Saudi Chem. Soc. 2019, 23, 781–794.
- [8]. K. M. Kadish and M. M. Morrison, J. Am. Chem. Soc. 1976, 98, 3326–3328.
- [9]. M. Guergueb, S. Nasri, J. Brahmi, F. Loiseau, F. Molton, T. Roisnel, V. Guerineau, I. Turowska-Tyrk, K. Aouadi and Habib Nasri, *RSC Adv.* 2020,10, 6900–6918.
- [10]. X. Ke, R. Kumar, M. Sankar and K. M. Kadish, *Inorg. Chem.* 2018, **57**, 1490–1503.
- [11]. K. M. Kadish, X. H. Mu and X. Q. Lin, *Inorg. Chem.* 1988, 17, 1489–1492.
- [12]. L. A. Truxillo and D. G. Davis, Anal. Chem., 1975, 47, 2260–2267.