Supplementary Information

The F19W mutation reduces the binding affinity of the transmembrane Aβ₁₁₋₄₀ trimer to the membrane bilayer

Thanh Thuy Tran,^{ab*} Feng Pan,^c Linh Tran,^{de} Christopher Roland^f and Celeste Sagui^f

^aLaboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam;

^bFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

^cDepartment of Statistics, Florida State University, Tallahassee, Florida, USA

^dInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam

eFaculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam

^fDepartment of Physics, North Carolina State University, Raleigh, North Carolina, USA

Email: tranthanhthuy@tdtu.edu.vn

System/Sequence	Ref.	Type of Study	Mutation	Main Results
Trimer $A\beta_{11-40}$	28	REMD in water solution (AMBER force-field + TIP3P water)	Wild-type	 β-content:42 ± 6 %, coil: 49 ± 7 %, Intermolecular interactions in the central hydrophobic cores stabilize the oligomer; Intermolecular polar contacts between D23 and residues 24-29 stabilize loop regions, Nter is maintain by intermolecular polar crossing contacts H13A-Q15B and H13B-Q15C.
Trimer $A\beta_{11-40}$	29	REMD in water solution (AMBER force-field + TIP3P water)	E22Q	The β -structure decreases in N-terminal but increases in C-terminal. The representative shapes of the E22Q trimer adopt a significant increase in β -structure (β : 47%). Enhancing the intramolecular polar contacts between the residue D23 to residues (24-29). The mutant is more stable than the WT.
Trimer $A\beta_{11-40}$	30	REMD in water (AMBER force-field + TIP3P water)	D23N	The D23N mutant has higher β -structure and stronger inter-chain interactions; There are structural changes, and the mutant has an enhanced aggregation rate. The A β fibril-binding ligands bind to the D23N and WT forms at different poses.
Trimer $A\beta_{11-40}$	31	REMD in water, (Amber99SB-ILDN, TIP3P water)	F19W	Secondary structure: 3% less β (39%) and 3% more coil content (52%) than WT; there is a decrease in most of the polar contacts, except for D23-K28 salt bridge (12%). Six mimima were identified in the free energy surface, which account for 20% of the total conformations. The binding free energy between neighbour chains of the mutant trimer increases by ~ 28 kcal mol ⁻¹ but fluctuates significantly (±27.1 kcal mol ⁻¹). The solvated F19W is more flexible than the WT in solution.
Trimer $A\beta_{11-40}$	32	REMD in DPPC lipid bilayer and in solution	E22K	The mutant size was larger than the WT; the β -content increases. Increasing contacts between peptide-membrane. The mutant is more stable than the WT.
Trimer $A\beta_{11-40}$	33	REMD in water + DPPC lipid bilayer	A21G	Conformational changes and wider free energy minima on the free energy surface and altered surface charges, weaker affinity to the DPPC lipid bilayers. These results are consistent with experimental data shown that A21G mutants of $A\beta$ peptides have a lower aggregation rate.
Trimer $A\beta_{11-40}$	34	REMD in water + DPPC lipid bilayer	Wild-type	β : ~ 40%, coil: 57%, salt-bridge D23-N27 stabilizes the loop region of the peptide. The trimer strongly attracts the DPPC lipid bilayer.

Table S1: A summary of the mutation studies.

To be continued \ldots

System/Sequence	Bef	Type of study	Mutation	Main results
System/Sequence	Itel.	Type of study	Mutation	E10W E90W do not hinder fibril formation
				F 19W, F 20W do not ninder normation. Monomer F10W fluorescence displays remarkable blue shift
$A\beta_{1-40}$	36	Experiment (Fluoresences)	F19W, F20W	over monomer F20W F20W has a loss hydrophobic environment
				than F19W in A β fibrils
				The β -sheet content decrease
				the salt bridge D23-K28 decrease.
Monomer $A\beta_{1-40}$	37	MD simulation in water	Double L17A/F19A	the helical conformation is the dominant conformation in $A\beta_{49}(L17A/F19A)$
				L17A/F19A double mutation diminishes $A\beta_{40}$ aggregation.
C CLAPP				Presenile dementia and cerebral
Gene of the APP	38	Clinical experiments in the cerebral	A21G (Flemish)	haemorrhage linked to Flemish A21G mutant
$(A\beta$ -precusor protein)		haemorrhage patients IV-3	· · · · ·	of the APP gene
Constant the ADD	20	Clinical experiments in the cerebral	Dut I D000	APP Gene and Hereditary Cerebral Hemorrhage with
Gene of the AFF		haemorrhage patients	Dutch D22Q	Amyloidosis (Dutch)
Cene of the Estal				Fatal familial insomnia: Genetic, neuropathologic,
familial incomnia (FFI)	40	Clinical experiments and genomic studies	Italian E22K	and biochemical study of a patient from a
Talilliai Ilisolillia (111)				new Italian kindred
				The average β -strand content in both alloforms
				increases with temperature. At physiological temperatures, both
				A β 40 and A β 42 adopt a collapsed-coil conformation
				with several short β -strands and a small (<1%)
				amount of α -helical structure. At slightly
AB is and AB is	41	Discrete molecular dynamics (DMD)	E99C	above physiological temperature, folded A β 42 monomers
$11\beta_{1-40}$ and $11\beta_{1-42}$		studies in implicit solvent	11220	display larger amounts of β -strands than the A β 40 monomers.
				E22G disrupts contacts in the A21-A30 region of both
				mutant $A\beta$ peptides, resulting in a less stable
				main folding region relative to the WT peptides.
				Artic mutant induces significant structural change
				at N-terminus of the $A\beta 40$ peptide.
				Increasing the helical content in the
		MD simulation in water	E22G L17A/F19A/E22G	CHC and C-terminal region of [A17/A19/G22]Aβ40
				as compared to $[G22]A\beta 40$
Monomer $A\beta_{1-40}$	42			$[A17/A19/G22]A\beta 40$ reduces the fibril formation rate
				by 0.57 times of $[G22]A\beta 40$
				[A17/A19/G22]Aβ40 diminishes
				aggregation compared to [G22]Aβ40
	43		$E22\Delta$	There is mutant enhanced oligomerization but no
Gene of the APP		Clinical experiments in the AD patients		fibrillization, as well as inhibited hippocampal long-term
Gone of the fift				potentiation over the WT peptide
				in rats in vivo.
	44	Clinical experiments in	D23N	Widespread neurofibrillary tangles, and unusually
Gene of the APP		AD patients		extensive distribution of $A\beta 40$ in plaques.
				Increasing toxicity.
				The β -sheet structure of A2V A β 42 monomer
Monomer $A\beta_{42}$	45	REMD simulations	A2V	is more than that in the wild-type monomer.
			BIOG BIOD	A2V Aβ42 is more toxic than WT Aβ42.
		Experiments (fluorescence,	F19G, F19P,	Local interactions impact the fibrillation kinetics,
$A\beta_{1}$ to	46	transmission electron microscopy, X-ray diffraction, and solid-state	F19E, F19K, F19Y, F19W,	the structures (the intermolecular hydrogen bonds) and dynamics
1 40				of the A β 40, but leave the general fibril
		NMR spectroscopy)	L34E, and L34K	structure unchanged.
$A\beta_{1-40}$	47	Computational + experimental studies	F19K	The perturbation contacts K19-L34 influence the local
		-		The impact of the mutation A 21C on A 2 structure
				and dynamics upping from A 240 to A 240 A 017
Dim a A B and				and dynamics varies from $A\beta 40$ to $A\beta 42$. $A21G$
Dimer $A \rho_{9-40}$ and	48	MD in water (GROMOS96 ff + spc water)	A21G	destabilizes the p-sneets and in Ap40,
dimer $A\beta_{9-42}$				but not in $A\beta 42$. Structural changes resulting in a
				reduced aggregation rate of AD norths containing
				the Flemish disease-causing mutation.
				The contents decrease $\sim 15.3\%$ (average value 41.7%);
		REMD in water + DPPC lipid bilayer		the β -contents increases ~ 4.46% (mean value 44.46%);
				essential salt-bridges (D23-N27 and D23-K28) disappear;
			F19W	total membrane-peptide contacts increases;
				structural diversity is greater with higher free energy values,
Present studies (F19W trimer $A\beta_{11-40}$)	this manuscript			the mutant is more flexible than the WT.
,,,	P*			I weive minima were found in the free energy surface,
				with representative states in the form of two 3-stranded- β -sheets
				with either antiparallel or perpendicular patterns,
				Which may act as nuleation for fibrillation.
				The binding free energy of protein-DPPC
				lipid bilayer increases by 46.74 kcal/mol.

Free Energy Perturbation (FEP) Method

In this method, the free energy difference between a system in its bound and unbound state is calculated as a function of a coupling parameter λ using MD simulations. Essentially, the bound state system is characterized with a Hamiltonian with λ set to zero, while the fully unbounded system is characterized by a Hamiltonian with λ equal to unity. Systems with intermediate values of λ are then defined such that the free energy change between neighbouring intermediate states with λ_i and λ_{i+1} is then $\Delta G_{\lambda_i \Rightarrow \lambda_{i+1}}$ which is calculated by means of Bennet's Acceptance Ratio (BAR)[1]. The full free energy difference between the unbound and the bound state is then obtained from a summation over all of these intermediate values:

$$\Delta G = \sum_{\lambda=0}^{\lambda=1} \Delta G_{\lambda_i \Rightarrow \lambda_{i+1}}$$

By varying λ from 0 to 1, the peptide is *de facto* annihilated from the transmembrane and solvated systems through an alteration of the non-bonded interactions, as illustrated in Figure S1. As a result, the peptide was annihilated twice in the two different systems; we therefore refer to the method as the double-annihilation binding free energy method.

Figure S1: A schematic of the double-annihilation binding free energy method. In this scheme, $A\beta$ peptide in the membrane represents the full-interaction state of the $A\beta$ peptide with the solvated membrane system. $A\beta$ peptide in solution represents the full-interaction state of the protein in solution, while the dummy protein indicates the protein without any interaction with surrounding molecules.

Our calculations here follow the previous work of Ngo et al.,[3]. A total of 15 values of λ were set up to reduce the non-bonded interactions from the full-interaction condition to the non-interaction mode with each simulation lasting 5 ns. The MD simulations were performed with the same starting conformations and initial velocities; but with different values of λ . The Coulomb interaction was reduced by six values of the coupling parameter λ , consisting of 0.00, 0.35, 0.55, 0.73, 0.88, and 1.00. The van der Waals interactions were set using 10 different λ values as follows: 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, 0.55, 0.70, 0.85, and 1.00. Overall, the binding free energy of the truncated mutant trimer and the membrane lipid bilayers was given by:

$$\Delta G_{bind} = \Delta G_1 - \Delta G_2$$

Free Energy Surface (FES)

The FES of the mutant trimer was constructed using the "gmx sham" tools[4] of GROMACS with the root-mean-square deviation (RMSD) and the radius of gyration (Rg) serving as the reaction coordinates. The "gmx sham" creates a multi-dimensional free-energy by reading and analyzing data sets. It plots the Gibbs free energy landscapes by a Bolzmann invertion of the multi-dimensional histograms. In our study, a 2-dimensional FES was calculated using two reaction coordinates RMSD and Rg, with ranges 0.37 - 0.66 nm for RMSD, and 1.39 - 1.56 nm for Rg, respectively. The FES was calculated on a 40×40 grid.

Collision Cross Section (CCS)

The collision cross section (CCS) values of the F19W $3A\beta_{11-40}$ were calculated using The Ion Mobility Projection Approximation Calculation Tool (IMPACT)[2]. IMPACT can theoretically

calculate collision cross section of protein models through the projection approximation method. IMPACT can also estimate CCS values of proteins from their coordinate trajectory files produced from MD simulations, leading per-frame CCS measurements to be calculated in a high-throughput manner. Our calculations used IMPACT with the trajectory method.

References

- [1] BENNETT, C. H. Efficient estimation of free energy differences from monte carlo data. J. Comput. Phys. 22 (1976), 245–268.
- [2] MARKLUND, E. G., DEGIACOMI, M. T., ROBINSON, C. V., BALDWIN, A. J., AND BENESCH, J. L. Collision cross sections for structural proteomics. *Structure* 23, 4 (2015), 791–799.
- [3] NGO, S. T., HUNG, H. M., TRAN, K. N., AND NGUYEN, M. T. Replica exchange molecular dynamics study of the amyloid beta (11-40) trimer penetrating a membrane. *RSC. Adv.* 7, 12 (2017), 7346–7357.
- [4] PAPALEO, E., MEREGHETTI, P., FANTUCCI, P., GRANDORI, R., AND DE GIOIA, L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J. Mol. Graph Model 27, 8 (2009), 89–99.

The transmembrane mutant F19W A β_{11-40} trimer was investigated using the temperature replica exchange molecular dynamics simulations with explicit solvent with 32 different replicas from 321 to 423 K. These temperatures are: 321.0, 323.9, 326.9, 329.9, 332.9, 335.9, 338.9, 342.0, 345.1, 348.2, 351.3, 354.5, 357.6, 360.8, 364.0, 367.3, 370.6, 373.9, 377.2, 380.5, 383.9, 387.3, 390.7, 394.1, 397.6, 401.1, 404.6, 408.1, 411.7, 415.3, 418.9, and 422.6 K.

Figure S2: The mean exchange rates between neighboring replicas during 400 ns of REMD simulations.

Figure S3. The temperature indices of replicas 1st and 32th are dispersed in the entire temperature space.

Deuterium order parameters

Figure S4. The lipid order parameters are investigated the both carbons atoms of acyl chains sn-1 (black) and sn-2 (red). The results are averaged over last 150 ns of the temperature REMD simulations.

Figure S5. Convergence of REMD simulations at 324 K. Distance distributions between the charge groups of D23 and N27 of chain B and chain C of the transmembrane mutant F19W $3A\beta_{11-40}$. The results were calculated for two time intervals 250-350 ns (black curves) and 250-400 ns (red curves).

Figure S6. The secondary structure distribution per residue of transmembrane F19W $3A\beta_{11-40}$ peptide, which were averaged from the last 150 ns of REMD simulations at 324K using DSSP tools.

Figure S7: The contacts map between phosphate atom of lipid bilayers with each residues of each chain of the F19W $3A\beta_{11-40}$

Figure S8: Averaged population of inter-molecular contacts between phosphate atoms of DPPC lipid bilayers and heavy atoms per residue of the truncated F19W $3A\beta_{11-40}$

Table S2: Th	he probabilities	of SC-SC	inter-peptide	contacts	between	neighbor	pair	chains	of	the
truncated mu	tant trimer.									

Probabilities	Chain A - Chain B (Figure 5a)	Chain B - Chain C (Figure 5b)		
>80%	W19-W19 (97.44%), Q15-Q15 (93.81%),	F20-F20 (97.81%), L17-L17 (92.05%),		
	F20-F20 (93.41%), M35-M35 (92.10%),	W19-W19 (90.06%), L34-L34 (85.71%),		
	L17-L17 (88.47%), L34-L34 (86.17%)	M35-M35 (80.37%), Q15-H13 (80.31%)		
60% - 80%	H14-H14 (79.92%), V18-F20 (79.65%),	H13-H13 (77.61%), I32-I32 (73.42%),		
	I31-I31 (75.65%), I32-I32 (75.16%) and	K16-K16 (72.67%), H14-H14 (66.79%),		
	V18-V18 (62.01%)	V18-V18 (66.32%), L34-W19 (64.78%),		
		V36-L17 (61.65%), V18-F20 (60.57%) and		
		V36-Q15 (60.42%)		
40%-60%	N-terminal – N-terminal:			
	K16-K16(52.04%),V12-H14(49.20%),	V12-E11 (41.64%),		
	H13-H13 (43.12%)			
	CHC – CHC:			
	A21-W19(56.30%),W19-L17(51.59%)	A21-A21 (49.85%)		
	C-terminal – C-terminal:			
	I32-A30(50.71%), V36-V36 (49.76%)			
	C-terminal – CHC:			
	L34 – L17 (46.44%)	L34-L17 (43.17%)		
	C-terminal – N-terminal:			
	V36-Q15 (56.22%)			

	Loop – Loop:	
	N27-N27(46.58%), E22-E22 (41.82%)	
20%-40%	N-terminal – N-terminal:	
	V12-V12(32.16%),V12-H13(33.69%),	V12-V12(37.68%), V12-H14(36.90%)
	H14-H13(33.68%),Q15-H13(36.50%),	
	H13-E11(25.88%)	
	Loop – CHC: E22-A21 (33.66%)	
	Loop – Loop:	E22-E22 (29.11%)
	E22-D23(30.17%);D23-N27 (27.04%),	
	C-terminal – C-terminal:	A30-A30 (24.34%)
	A30-A30 (21.78%), L34-I32(26.90%),	
	V36-L34 (21.12%)	
	C-terminal – CHC:	I32–A21 (30.89%), I32-W19 (28.42%),
	V36-L17 (39.94%)	A30-A21 (23.91%)
	C-terminal – N-terminal:	
	V40-H13 (25.1%)	
		CHC – CHC:
		W19-L17(37.90%),A21-W19(35.83%)
		C-terminal–loop: A30 – D23: 22.91%
<20%	C-terminal – C-terminal:	
	I32-L34(18.05%), L34-V36(17.48%),	I32-L34(12.88%), L34-V36(15.38%),
	V36-V39(16.14%), V39-	V36-L34(19.72%), V40-V39(13.69%)
	M35(11.57%), V40-V39(10.71%)	
	C-terminal – Loop:	
	A30-N27 (19.71%)	I32- V24 (16.19%)
	Loop – Loop:	
	K28-K28(19.74%), N27-S26(16.31%),	
	N27-K28 (13.55%)	
	C-terminal – CHC:	
	I32-W19 (10.74%), L34-W19	L34-A21 (13.41%),V36-W19 (12.08%)
	(10.74%)	
	N-terminal – N-terminal:	
	V12-E11 (15.70%), H13-Q15	V12-H13(15.51%), H13-E11 (11.41%),
	(12.27%), K16-H14 (14.55%)	
	N-terminal – CHC:	

Q15-L17 (10%) Q15-L17 (12.37%)	
--------------------------------	--

Table S3: The probabilities of BB-BB inter-peptide contacts between neighbor pair chains of the truncated mutant trimer.

Probabilities	Chain A - Chain B (Figure 5d)	Chain B - Chain C (Figure 5e)			
>80%	I32-G33 (99.83%), L17-K16 (99.44%),	L34-M35 (99.45%), W19-W19 (98.40%),			
	L34-G33 (99.25%), L34-M35 (99.24%),	V18-V18 (98.09%), W19-F20 (98.06%),			
	K16-K16 (99.16%), I32-I31 (99.14%),	M35-M35 (97.93%), F20-F20 (97.77%),			
	L17-V18 (98.91%), Q15-K16 (98.77%),	L17-V18 (97.33%), W19-V18 (95.81%),			
	L17-L17 (97.89%), L34-L34 (97.58%),	V36-M35 (94.83%), A21-F20 (94.55%),			
	V18-V18 (97.52%), G33-G33 (96.97%),	L17-L17 (94.25%), K16-K16 (93.89%),			
	Q15-Q15 (96.56%), V30-I31 (96.11%),	L34-L34 (93.85%), I32-G33 (93.71%),			
	I32-I32 (95.37%), I31-I31 (95.18%), M35 -	Q15-K16 (92.25%), L17-K16 (91.33%),			
	M35 (94.74%), V36-M35 (92.63%), Q15-	L34-G33 (90.27%), G33-G33 (88.53%),			
	H14(90.23%), W19-V18 (89.90%), W19-	V36-V36 (86.09%), V36-G37 (85.37%)			
	W19 (89.11%), A30-A30 (88.40%), V36 -	and A21-A21 (83.31%).			
	V36 (88.05%) and W19-F20 (83.28%)				
60%-80%	H14-H14 (79.27%), F20-F20 (70.44%),	G37-G37 (77.45%), Q15-H14 (75.99%),			
	V36-G37 (67.66%), G29-G29 (64.52%),	Q15-Q15 (72.02%), H14-H14 (64.22%),			
	G37-G37 (62.44%)	I32-I32 (63.75%), I32-I31 (63.64%), H13-			
		H14 (60.30%)			
40%-60%	A21-F20 (55.24%), G29-K28 (40.48%),	I31-I31 (59.93%) and A30-I31 (55.89%)			
	and H13-H14 (42.36%)				
20%-40%	V38-V38 (39.94%), V38-V37 (39.64%),	residues 36 - 39 of chain B with			
	V30-G29 (39.84%), N27-N27 (23.86%),	residues 37 – 39 of chain C (mean			
	N27-S26 (20.77%), A21-A21 (22.75%),	probability of 27.59%)			
	H13-H13 (31.59%), H13-V12 (26.38%)	A30-A30 (35.17%), A30 with residues			
	and V12 -V12 (25.82%)	D23, V24 (38.33%), G29-A30 (20.55%),			
		G29-D23 (23.18%), G29-V24 (31.91%),			
		A21-E22 (35.84%), E22-E22 (22.30%) and			
		H13 with residue E11, V12, H13			
		(probability of 27.65%)			
<20%	K28-K28 (14.46%), N27-K28 (7.37%) and	A30-G25 (15%), G29-G25 (14.26%),			
	S26-S26 (7.29%)	G29-G29 (17%), G29-K28 (17%), K28-			
		S26 (8.93%), D23-E22 (7.6%), D23-V24			
		(7.6%), N27-G25(7%).			

Table S4: Characterizations of the structures of the first 4 main States S1-S4 of the transmebrane F19W $3A\beta_{11-40}$: Shown are the β -strands and coils positions, the orientation of 2 β -sheets and the inter-peptide contacts that stabilize the 2 β -domains

State	β-strands positions	Coils positions	Orientation	Inter-peptide contacts
			of 2 β -sheets	
S1	15-20, 28-36 : chain A	11-14, 21-27, 37-40: chain A	antiparallel	CHC-CHC, Cter-Cter and
	15-19, 28-36 : chain B	11-14, 20-27, 37-40: chain B		CHC-Cter, Nter-Nter
	15-19, 28-35 : chain C	11-14, 20-27, 36-40: chain C		between 2 adjacent pair
				chains
S2	14-23, 30-36 : chain A	11-13, 24-29, 37-40: chain A	perpendicular	Nter-Nter, CHC-CHC and
	14-21, 29-36 : chain B	11-13, 22-28, 37-40: chain B		Cter-Cter between 2
	15-20, 31-36 : chain C	11-14, 21-30, 37-40: chain C		adjacent pair chains
S 3	14-21, 31-35 : chain A	11-13, 22-30, 36-40: chain A	antiparallel	Nter-Nter, CHC-CHC and
	14-21, 30-36 : chain B	11-13, 22-29, 37-40: chain B		Cter-Cter
	15-19, 30-36 : chain C	11-14, 20-29, 37-40: chain C		
S4	16-22, 30-33 : chain A	11-15, 23-29, 34-40: chain A	antiparallel	CHC-CHC and Cter-Cter
	15-22, 30-37 : chain B	11-14, 23-29, 38-40: chain B		
	15-17, 31-36 : chain C	11-14, 18-30, 37-40: chain C		