Supporting Information for

N-doped mixed Co, Ni-oxides with petal structure as effective

catalysts for hydrogen and oxygen evolution by water splitting

Hai Zhong^{a, #}, Guofeng Cheng^{b, #}, Guangcai Ma^b, Enhui Wu^c, Zhuo Zhang^b, Xuefeng She^{a,*},

Shuqiang Jiao^a, Jingsong Wang^a, Qingguo Xue^a

^a State Key Laboratory of Advanced Metallurgy, University of Science and Technology, Beijing, 100083, China.

^b School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China.

^c Panzhihua International Research Institute of Vanadium and Titanium, Panzhihua University, Panzhihua, 617000, China.

*Corresponding author.

[#]Co-author.

E-mail addresses: shexuefeng@ustb.edu.cn (X. She).

Contents:

1 SEM image of the as-grown nano-petals;

2 Influence of the CTAB concentration over the morphology of samples;

3 The concentration list of doped nitrogen (at.%);

4 Crystal structure modeling and three-dimensional electron cloud density distribution.

Part 1. SEM image of the as-grown nano-petals

Fig. S1. SEM image of the nano-petals. Figure 2a in main text is taken from the red rectangle.

Part 2. Influence of the CTAB concentration over the morphology of samples

Fig. S2. SEM images of the as-grown samples obtained by using different CTAB concentrations: a) 0 mmol/L; b) 5 mmol/L; c) 10 mmol/L; d) 20 mmol/L.

Fig. S3. Enlarged-view of Fig. S2 (b).

Urea Concentration (mmol/L)	Element	Start BE	Peak BE	End BE	FWHM eV	Area (P) CPS. eV	Area (N) TPP-2M	Atomic %
0	N1s	410.16	406.65	395.16	0.57	1648.37	0.01	1.36
	O1s	536.41	531.76	527.86	3.01	89263.47	0.43	44.98
	Co2p	810.46	781.42	775.36	4.69	130184.55	0.11	11.69
	Ni2p	887.86	855.9	850.16	3.37	54628.01	0.04	4.51
1.0	N1s	409.92	406.61	396.02	2.02	3338.08	0.03	2.2
	O1s	535.72	531.41	527.87	2.09	107237.27	0.51	43.1
	Co2p	811.22	781.08	775.02	3.86	149102.12	0.13	10.67
	Ni2p	888.62	855.79	850.12	2.65	59069.03	0.05	3.89
2.0	N1s	410.78	407.06	396.53	1.87	6735.09	0.05	4.51
	O1s	536.23	531.96	528.23	2.24	111168.16	0.53	45.39
	Co2p	811.13	781.56	775.83	3.72	143457.53	0.12	10.43
	Ni2p	888.33	856.23	851.33	2.54	53044.82	0.04	3.55
3.0	N1s	410.15	407.07	396.9	2.03	6018.97	0.05	4.49
	O1s	536.35	532	528.4	2.53	74769.07	0.36	33.98
	Co2p	811.05	781.45	774.95	3.97	86454.38	0.07	7
	Ni2p	888.75	856	850.05	2.58	29544.2	0.02	2.2

Part 3. The concentration list of doped nitrogen (at.%) (Not including C1s)

Table S1. By adjusting the concentration of urea in hydrothermal-solution, samples with different N-doping concentrations can be obtained. \Box

Fig. S4. The corresponding relationship between N-doping concentration in samples and urea concentration in hydrothermal-solution.

Part 4. Crystal structure modeling and three-dimensional electron cloud density distribution

Fig. S5. Crystal structure modeling (a) and three-dimensional electron cloud density distribution (b).