Electronic Supplementary Information for

Atomically dispersed Cu and Fe on N-doped carbon materials for CO₂ electroreduction: Insight into the curvature effect on activity and selectivity

Yue Zhang, Lei Fang, and Zexing Cao*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China

Fig. S1. Optimized structures and projected density of states (PDOS) of Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT, where the corresponding d-band centers (ε_d) of -3.22, -2.67, -0.99 and -1.10 eV are presented.

Fig. S2 The phonon spectra of Cu@N-Gr and Fe@N-Gr, where G(0, 0, 0), X(1/2, 0, 0), S(1/2, 0, 0), and Y(0, 1/2, 0) are the high-symmetric points in the first Brillouin region.

Fig. S3. The adsorption configuration of CO₂ on Cu@N-Gr, Cu@N-CNT, Fe@N-Gr, and Fe@N-CNT.

Fig. S4. The PDOS and differential charge density of COOH/OCHO species adsorbed on Cu@N-Gr and Cu@N-CNT.

Fig. S5. Different reaction pathways and predicted relative free energy diagrams of CO₂ER to HCOOH on (a) Cu nanostructures and (b) Fe nanostructures, where red, blue, pink and green represent the low-energy pathways on Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT, and the other routes are highlighted in black.

Fig. S6. Calculated density of states (DOS) of the isolated CO.

Fig. S7. Linear correlation between the *CO binding energy (E_b) and ε_d of metal atoms in Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT.

Fig. S8. Different reaction pathways and predicted relative free energy diagrams of CO₂ER to CH₃OH.

Fig. S9. The optimized configurations of main species involved in CO₂ER on Cu@N-Gr, Cu@N-CNT, Fe@N-CNT and Cu@N-CNT.

Fig. S10. The PDOS and differential charge density of HCOOH specie adsorbed on Cu@N-CNT.

Fig. S11. The limiting potential diagram of generating CO, HCOOH, and CH₃OH on Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT in water solution.

Species	$E_{\rm ele}$	$E_{\rm ZPE}$	TS	$\int C_{\rm p} {\rm d}T$	Ga
CO ₂	-22.95	0.31	0.66	0.10	-23.21
СО	-14.77	0.13	0.61	0.09	-15.16
H ₂ O	-14.22	0.57	0.58	0.10	-14.14
H ₂	-6.77	0.27	0.40	0.09	-6.81
НСООН	-29.89	0.89	0.77	0.11	-29.66
CH ₃ OH	-30.22	1.35	0.74	0.11	-29.50

Table S1. Electronic energy (E_{ele}), thermodynamic energy corrections (E_{ZPE} , *TS*, $\int C_p dT$) and Gibbs free energy (*G*) of involved gaseous species (in eV).

^a $\overline{G} = E_{ele} + E_{ZPE} + \int CpdT - TS$, where E_{ZPE} , $\int C_pdT$, TS are the zero-point energy, enthalpy change contributed by molecular vibration from 0 to 298 K, and entropy correction, respectively.

Cu@N-Gr Cu@N-CNT Fe@N-Gr Fe@N-CNT Elementary steps ΔG_1 ΔG_2 ΔG_1 ΔG_2 ΔG_1 ΔG_2 ΔG_1 ΔG_2 $* + CO_2 + H^+ + e^- \rightarrow *COOH$ 1.66 1.54 0.57 0.44 0.54 0.39 1.51 1.35 0.90 $* + CO_2 + H^+ + e^- \rightarrow *OCHO$ 0.60 0.71 0.34 0.05 -0.00 0.16 -0.12 $*\text{COOH} + \text{H}^+ + e^- \rightarrow *\text{CO} +$ -0.80 -0.88 -1.48 -1.48 -1.03 -1.13 -0.96 -1.02 H_2O $*CO \rightarrow * + CO$ -0.22 -0.20 0.57 0.56 1.09 1.12 1.07 1.06 $*COOH + H^+ + e^- \rightarrow * +$ -1.51 -1.58 ____ HCOOH $*\text{OCHO} + \text{H}^+ + e^- \rightarrow * +$ -0.96 -0.92 ____ HCOOH $*COOH + H^+ + e^- \rightarrow *HCOOH$ -0.98 -0.98 -0.17 -0.04 -0.24 -0.27 ____ _ $*OCHO + H^+ + e^- \rightarrow *HCOOH$ -0.49 -0.32 -0.04 0.05 -0.09 -0.19 ____ ____ *HCOOH \rightarrow * + HCOOH ____ ____ -0.42 -0.45 -0.26 -0.47 -0.15 -0.19 $*CO + H^+ + e^- \rightarrow *CHO$ 0.79 0.71 1.28 1.19 0.90 0.82 0.61 0.54 $^{*}\mathrm{CO} + \mathrm{H^{+}} + e^{-} \rightarrow ^{*}\mathrm{COH}$ 2.72 2.33 2.80 2.41 2.17 1.90 1.82 1.51 *HCOOH + H⁺ + $e^- \rightarrow$ *CHO + ____ 0.78 0.69 0.04 -0.27 -0.12 -0.22 ____ H_2O $*{\rm CHO} + {\rm H}^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} {\rightarrow} *{\rm CHOH}$ 0.99 0.70 0.43 0.20 0.29 0.15 0.68 0.49 $*CHO + H^+ + e^- \rightarrow *CH_2O$ -0.64 -0.66 0.23 0.25 0.30 0.30 _ ____ *CHOH + H⁺ + $e^- \rightarrow$ *CH₂OH -1.33 -0.46 -0.33 -0.42 -0.32 -0.49 -0.38 -1.14 $*CH_2O + H^+ + e^- \rightarrow *CH_2OH$ 0.60 -0.36 -0.43 -0.19 ____ ____ 0.53 -0.11 $*CH_2O + H^+ + e^- \rightarrow *OCH_3$ 0.36 -0.52 -0.50 ____ 0.32 -0.46 -0.42 ____ $*CH_2OH + H^+ + e^- \rightarrow * +$ -1.44 -1.43 -1.44 -1.47 -0.45 -0.49 -0.50 -0.55 CH₃OH $*OCH_3 + H^+ + e^- \rightarrow *+ CH_3OH$ -1.20 -1.26 -0.29 -0.42 -0.15 -0.32 — —

Table S2. CO₂ER reduction pathways and free energy changes ($\Delta G/eV$) on Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT, where ΔG_1 and ΔG_2 are the free energy changes in gas phase and water solvent, respectively.

I	Cu@N-Gr			Cu@N-CNT			
Intermediates	$E_{\rm ele}$	$E_{\rm sol}$	$\Delta E_{\rm sol}$	$E_{\rm ele}$	$E_{\rm sol}$	$\Delta E_{ m sol}$	
*COOH	-560.23	-560.38	-0.15	-876.64	-876.81	-0.17	
*OCHO	-560.70	-560.98	-0.28	-877.06	-877.39	-0.33	
*CO	-549.87	-549.79	0.08	-866.94	-866.79	0.15	
*СНО	-552.72	-552.71	0.01	-869.26	-869.20	0.06	
*СОН	-550.80	-551.11	-0.31	-867.73	-867.97	-0.25	
*СНОН	-555.48	-555.76	-0.29	-872.58	-872.75	-0.17	
*CH ₂ O	_	_	_	-873.59	-873.56	0.03	
*CH ₂ OH	-560.30	-560.39	-0.10	-876.73	-876.76	-0.03	
*OCH ₃	—	_	_	-876.95	-876.95	-0.00	
			Fe@N-Gr				
Intermedictes		Fe@N-Gr]	Fe@N-CNT	,	
Intermediates	E _{ele}	Fe@N-Gr E _{sol}	$\Delta E_{ m sol}$] E _{ele}	Fe@N-CNT E _{sol}	$\Delta E_{\rm sol}$	
Intermediates *COOH	<i>E</i> _{ele} -566.72	Fe@N-Gr <i>E</i> _{sol} -566.87	$\Delta E_{\rm sol}$ -0.15	E _{ele} -882.71	Fe@N-CNT <i>E</i> _{sol} -882.86	$\Delta E_{\rm sol}$ -0.15	
Intermediates *COOH *OCHO	<i>E</i> _{ele} -566.72 -566.79	Fe@N-Gr <i>E</i> _{sol} -566.87 -566.90	Δ <i>E</i> _{sol} -0.15 -0.11	<i>E</i> _{ele} -882.71 -882.81	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89	$\Delta E_{\rm sol}$ -0.15 -0.08	
Intermediates *COOH *OCHO *CO	<i>E</i> _{ele} -566.72 -566.79 -556.55	Fe@N-Gr <i>E</i> _{sol} -566.87 -566.90 -556.49	$\Delta E_{\rm sol}$ -0.15 -0.11 0.06	<i>E</i> _{ele} -882.71 -882.81 -872.44	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89 -872.34	$\Delta E_{\rm sol}$ -0.15 -0.08 0.11	
Intermediates *COOH *OCHO *CO *CO *CHO	<i>E</i> _{ele} -566.72 -566.79 -556.55 -559.30	Fe@N-Gr <i>E</i> _{sol} -566.87 -566.90 -556.49 -559.32	ΔE_{sol} -0.15 -0.11 0.06 -0.02	<i>E</i> _{ele} -882.71 -882.81 -872.44 -875.47	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89 -872.34 -875.43	ΔE_{sol} -0.15 -0.08 0.11 0.04	
Intermediates *COOH *OCHO *CO *CHO *COH	<i>E</i> _{ele} -566.72 -566.79 -556.55 -559.30 -558.06	Fe@N-Gr <i>E</i> sol -566.87 -566.90 -556.49 -559.32 -558.27	ΔE_{sol} -0.15 -0.11 0.06 -0.02 -0.21	<i>E</i> _{ele} -882.71 -882.81 -872.44 -875.47 -874.31	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89 -872.34 -875.43 -874.52	ΔE_{sol} -0.15 -0.08 0.11 0.04 -0.21	
Intermediates *COOH *OCHO *CO *CHO *COH *COH *CHOH	<i>E</i> _{ele} -566.72 -566.79 -556.55 -559.30 -558.06 -562.73	Fe@N-Gr <i>E</i> _{sol} -566.87 -566.90 -556.49 -559.32 -558.27 -562.90	ΔE_{sol} -0.15 -0.11 0.06 -0.02 -0.21 -0.17	<i>E</i> _{ele} -882.71 -882.81 -872.44 -875.47 -874.31 -878.56	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89 -872.34 -875.43 -874.52 -878.71	ΔE_{sol} -0.15 -0.08 0.11 0.04 -0.21 -0.15	
Intermediates *COOH *OCHO *CO *CHO *COH *COH *CHOH *CH2O	<i>E</i> _{ele} -566.72 -566.79 -556.55 -559.30 -558.06 -562.73 -562.81	Fe@N-Gr <i>E</i> sol -566.87 -566.90 -556.49 -559.32 -558.27 -562.90 -562.81	ΔE_{sol} -0.15 -0.11 0.06 -0.02 -0.21 -0.17 0.01	<i>E</i> _{ele} -882.71 -882.81 -872.44 -875.47 -874.31 -878.56 -878.90	Fe@N-CNT <i>E</i> _{sol} -882.86 -882.89 -872.34 -875.43 -874.52 -878.71 -878.87	ΔE_{sol} -0.15 -0.08 0.11 0.04 -0.21 -0.15 0.04	
Intermediates *COOH *OCHO *CO *CHO *COH *CHOH *CHOH *CH2O *CH2OH	E_{ele} -566.72 -566.79 -556.55 -559.30 -558.06 -562.73 -562.81 -566.84	Fe@N-Gr E_{sol} -566.87 -566.90 -556.49 -559.32 -558.27 -562.90 -562.81 -566.91	ΔE_{sol} -0.15 -0.11 0.06 -0.02 -0.21 -0.17 0.01 -0.07	E_{ele} -882.71 -882.81 -872.44 -875.47 -874.31 -878.56 -878.90 -882.73	Fe@N-CNT E _{sol} -882.86 -882.89 -872.34 -875.43 -874.52 -878.71 -878.87 -882.77	ΔE_{sol} -0.15 -0.08 0.11 0.04 -0.21 -0.15 0.04 -0.04	

Table S3. Solvation energies (ΔE_{sol}) of the main reaction intermediates on Cu@N-Gr, Cu@N-CNT, Fe@N-Gr and Fe@N-CNT. ΔE_{sol} is derived from the equation: $\Delta E_{sol} = E_{sol} - E_{ele}$, where E_{ele} and E_{sol} are the electronic energy of intermediates in gas phase and aqueous solvent, respectively.