Stability study of halide perovskite and its enhanced X-ray scintillation from the incorporating of anodic TiO_2 nanotubes

Hui Li,^a Zhenhua Chen,^b* Zhuocheng Sang,^a Xiangzhi Zhang,^b Yong wang^b

^aDepartment of Applied Physics, Donghua University, Songjiang District, Shanghai 201620, China ^bShanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China

Figure S1. Schematic of the spectrometric measurement setup mounted on the BL14B beamline.

Figure S2. XPS measurements for perovskite CH₃NH₃PbI₃ film deposited on FTO glass.

Figure S3. (a)-(c) The two-dimensional diffraction signals of the as prepared $CH_3NH_3PbI_3/TiO_2$ NP films using incident measurement grazing angles of 2°, 0.5°, and 0.2°. (d) The dimensional diffraction spectrum integrated from Figure S3a-3c in the out-of-plane direction.

Figure S4. Schematic of the spectrometric measurement setup mounted on the BL13W beamline at SSRF.

Figure S5. XEOL spectra of CH₃NH₃PbBr₃/TiO₂ NPs and CH₃NH₃PbBr₃/TiO₂ NTs with 40 keV X-ray excitation.

Table S1. Parameters obtained from fitting the Pb L3 EXAFS by scattering from a single coordination shell of iodine.

Sample	Atomic	Amplitude	Debye-Waller	Bond length,	R factor
	number,	damping	factor, $\sigma^2(\text{\AA}^2)$	Pb-I ₂ , <i>r</i> (Å)	
	Na	factor, S_0^2			
CH ₃ NH ₃ PbI ₃	6	0.6777	0.0165	3.1415	0.0089
CH ₃ NH ₃ PbI ₃ ,	6	0.7037	0.0176	3.1858	0.0037
80%RH					

Table S2. Fitted parameters for $CH_3NH_3PbI_3$ samples prepared on TiO_2 nanotubes or TiO_2 nanoparticles.

Fluorescence decay profiles were fitted by exponential function equation: $I(t) = A_0 + A_1 * exp(-t/\tau_1) + A_2 * exp(-t/\tau_2)$. τ_1 and τ_2 denote the decay time for the faster and the slower components, and A₁ and A₂ are the fluorescence amplitudes.

Sample	\mathbf{A}_0	$ au_l$ (ns)	$ au_2$ (ns)	A ₁	A ₂
CH ₃ NH ₃ PbI ₃ /TiO ₂ nanotubes at (790 nm)	0.14	12.9	220	40	1
CH ₃ NH ₃ PbI ₃ /TiO ₂ nanoparticles at (790 nm)	0.26	12	170	80	0.9