Electronic Supplementary Information (ESI)

Effect of Ni/Co mass ratio and NiO-Co₃O₄ loading on catalytic performance of NiO-Co₃O₄/Nb₂O₅-TiO₂ for direct synthesis of 2propylheptanol from *n*-valeraldehyde

Lili Zhao,^{ab} Hualiang An, ^{*a} Xinqiang Zhao^{*a} and Yanji Wang^a

^aHebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving, School of Chemical

Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

^bCollege of Science and Technology, Hebei Agricultural University, Huanghua, Hebei 061100, China

* Corresponding author: Xinqiang Zhao, Hualiang An

Postal address:

School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road,

Hongqiao District, Tianjin, 300130, China E-mail address: zhaoxq@hebut.edu.cn, anhl@hebut.edu.cn Fax: +86-22-60204294

S1. XPS spectra of NiO-Co₃O₄/Nb₂O₅-TiO₂ with different Ni/Co mass ratios before and after reaction

Fig. S1 Ni 2p and Co 2p XPS spectra of NiO-Co₃O₄/Nb₂O₅-TiO₂ with different Ni/Co mass ratios before and after reaction. a: Ni/Co=10; b: Ni/Co=8/3; c: Ni/Co=6/5; d: Ni/Co=4/7.

S2. Catalytic performance of NiO-Co₃O₄/Nb₂O₅-TiO₂

The NiO-Co₃O₄/Nb₂O₅-TiO₂ catalyst with a Ni/Co mass ratio of 8/3 and a NiO-Co₃O₄ loading of 14 wt.% was used to study the effect of reaction conditions.

The effect of catalyst amount was investigated and the result is listed in Table S1. With an increase of catalyst amount, *n*-valeraldehyde could be converted completely until the catalyst weight percentage reached 20 %. The selectivity of 2-PH increased firstly, reached its highest value at a catalyst weight percentage of 15 %, decreased and finally dropped to zero at a catalyst weight percentage of 20 %. The selectivity of *n*-pentanol decreased firstly, reached its lowest value at a catalyst weight percentage of 15 %, and then increased. When the catalyst weight

percentage was 10 %, the selectivity of *n*-pentanol, 2-propylheptanal and 2-PH was almost 1/3 due to less active sites. 2-PH was not formed and 2-propyl-2-heptenal and 2-propylheptanal were the main products at catalyst amount of 20 %, possibly owing to incomplete reduction of NiO.

Catalyst amount/%	Xv/%	$S_{\rm PO}$ /%	S _{2-PHEA} /%	S _{2-PHA} /%	S _{2-PH} /%
10	100	30.7	0	34.9	31.9
12.5	100	28.1	0	0	69.6
15	100	18.2	0	0	81.4
17.5	100	25.1	0	0	73.0
20	92.5	10.6	30.6	50.4	0

Table S1 Effect of catalyst amount on direct synthesis of 2-PH from *n*-valeraldehyde

Reaction conditions: T=200 °C, P=3 MPa, t=6 h.

V: *n*-valeraldehyde; PO: *n*-pentanol; 2-PHEA: 2-propyl-2-heptenal; 2-PHA: 2-propylheptanal;

2-PH: 2-propylheptanol. X: conversion; S: selectivity.

The effect of reaction pressure on direct synthesis of 2-PH from *n*-valeraldehyde was investigated and the result was listed in Table S2. *n*-Valeraldehyde was not completely reduced and 2-PH was not formed at a reaction pressure of 2 MPa. The main products were 2-propylheptanal and 2-propyl-2-heptenal instead. When reaction pressure was higher than 3 MPa, *n*-valeraldehyde was reduced completely while the selectivity of 2-PH reached its optimum at reaction pressure of 3 MPa and then decreased. The selectivity of *n*-pentanol increased significantly with a decrease of 2-PH selectivity at a reaction pressure of 4 MPa.

Reaction pressure/MPa	X _V /%	$S_{\rm PO}$ /%	S _{2-PHEA} /%	S _{2-PHA} /%	S _{2-PH} /%
2	94.7	8.2	32.8	52.8	0
3	100	18.2	0	0	81.4
4	100	33.1	0	0	59.4

Table S2 Effect of reaction pressure on direct synthesis of 2-PH from *n*-valeraldehyde

Reaction conditions: a weight percentage of catalyst =15 %, T=200 °C, t=6 h.

V: *n*-valeraldehyde; PO: *n*-pentanol; 2-PHEA: 2-propyl-2-heptenal; 2-PHA: 2-propylheptanal; 2-PH: 2-propylheptanol. *X*: conversion; *S*: selectivity.

The effect of reaction temperature on direct synthesis of 2-PH from *n*-valeraldehyde was investigated. As can be seen from Table S3, conversion of *n*-valeraldehyde was 100 % at a reaction temperature ranging from 180 $^{\circ}$ C to 210 $^{\circ}$ C. With an increase of reaction temperature,

selectivity of 2-PH increased first and then decreased while that of *n*-pentanol changed just the opposite. *n*-Valeraldehyde self-condensation is controlled by kinetics at a lower reaction temperature and the increase of reaction temperature is conducive to increasing the reaction rate. However, the reaction is controlled by thermodynamics at a higher reaction temperature and the increase of reaction temperature is not conducive to the reaction.^{S1} In addition, total selectivity of both *n*-pentanol and 2-PH decreased at reaction temperature of 210 °C, possibly due to esterification of *n*-pentanol or 2-PH with by-product *n*-pentanoic acid which was confirmed by gas chromatography-mass spectrometry (GC-MS) analysis results. This indicated that a higher reaction temperature promoted the occurrence of side-reactions such as esterification. Selectivity of 2-PH was the highest (81.4 %) and that of *n*-pentanol was the lowest (18.2 %) at a reaction temperature of 200 °C.

 Table S3 Effect of reaction temperature on direct synthesis of 2-PH from *n*-valeraldehyde

Reaction temperature/°C	X _V /%	$S_{ m PO}$ /%	S _{2-PHA} /%	S _{2-PH} /%
180	100	28.0	27.3	43.6
190	100	27.6	0	71.1
200	100	18.2	0	81.4
210	100	25.0	0	66.1

Reaction conditions: a weight percentage of catalyst =15 %, P=3 MPa, t=6 h.

V: n-valeraldehyde; PO: n-pentanol; 2-PHA: 2-propylheptanal; 2-PH: 2-propylheptanol.

X: conversion; S: selectivity.

The effect of reaction time on direct synthesis of 2-PH from *n*-valeraldehyde was investigated and the results are shown in Table S4. 2-Propylheptanal was formed at a reaction time less than 5 h, indicating that C=O bond of 2-propylheptanal was not completely hydrogenated. The main product was 2-PH at reaction time of 5 h, indicating that the product was completely hydrogenated. However, selectivity of *n*-pentanol decreased slightly while selectivity of 2-PH remained basically unchanged at reaction time of 7 h, possibly due to the reaction of *n*-pentanol with by-product *n*-pentanoic acid to amyl valerate.

Reaction time/h	Xv/%	S _{PO} /%	S _{2-PHA} /%	S _{2-PH} /%
4	100	19.1	15.2	65.1
5	100	19.0	0	80.4
6	100	18.2	0	81.4
7	100	15.0	0	79.2

Table S4 Effect of reaction time on direct synthesis of 2-PH from *n*-valeraldehyde

Reaction conditions: a weight percentage of catalyst =15 %, P=3 MPa, T=200 °C.

V: *n*-valeraldehyde; PO: *n*-pentanol; 2-PHA: 2-propylheptanal; 2-PH: 2-propylheptanol.

X: conversion; S: selectivity.

Reference

S1 L. Zhao, H. An, X. Zhao and Y. Wang, Ind. Eng. Chem. Res., 2016, 55, 12326-12333.