Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting information

Simple primary β-amino alcohols as organocatalysts for the asymmetric Michael addition of β-keto esters to nitroalkenes

Zubeda Begum,^a Haruka Sannabe, Chigusa Seki,^a Yuko Okuyama,^b Eunsang Kwon,^c Koji Uwai,^a Michio Tokiwa,^d Suguru Tokiwa,^d Mitsuhiro Takeshita,^d and Hiroto Nakano^{*a}

^aDivision of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585. E-mail: catanaka@mmm.muroran-it.ac.jp

^bTohoku Medical and Pharmaceutical University, 4-4-1 Komastsushima, Aoba-Ku, Sendai 981-8558, Japan. E-mail:yoku@tohoku-mpu.ac.jp

^cResearch and Analytical center for Giant molecules, Graduate School of Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan. E-mail:ekwon@tohoku.ac.jp

^dTokiwakai Group, 62 Numajiri Tsuduri-Chou Uchigo, Iwaki 973-8053, Japan. Email:hisyo@tokiwa.or.jp

1. General information.

- 2. General procedure for the Asymmetric Michael addition of β -keto esters to Nitroalkenes.
- 3. High performance Liquid Chromatography (HPLC) data of Michael adducts 4, 4', 7-20.
- 4. ¹H NMR and ¹³C NMR spectra of compounds 4, 7-20.

1. General information:

All reagents and dry solvents were purchased from commercial vendors and used directly without further purification. All reactions were placed in dried sample vials inserted with magnetic beads. Thinlayer chromatography (TLC) was performed on Merck silica gel 60 F254 plates and the analytes were identified under UV light. Infrared (IR) spectra were measured with a JASCO FT/IR-4100 spectrophotometer. Flash column chromatography was performed using silica gel pore size 60N (40-100 μ m). ¹H and ¹³C NMR spectroscopic data were recorded using a JEOL JNM-ECA500 instrument with tetramethyl silane as the internal standard. HPLC data were collected using the TOSOH instrument equipped with (UV-8020, DP-8020, and SD-8022) detectors using Daicel Chiralcel OD-H column. Optical rotations were measured with a JASCO-DIP-370 digital polarimeter. MS were taken on a JEOL-JMS-700V spectrometers.

2. General procedure for catalytic asymmetric Michael addition of β -keto ester 2a with nitroolefin 3a using catalyst 1a.

To a solution of catalyst **1a** (10 mol%) in dry toluene (2 mL) with Molecular sieves 4A was added β keto esters,ketones **2a,2b-g** (0.4 mmol) at RT under inert atmosphere and the solution was stirred at same temperature. After 1 h, the reaction was cooled to -30 °C and the nitrostyrene **3a,6a-i** (0.2 mmol) was added. The reaction was allowed to stir at -30 °C for 48h. After the completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to give the corresponding chiral Michael adduct.

HPLC spectra of Michael Adducts

[2*R*,3*S*]-Methyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (**4**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) $t_{\rm R}$ = 16.8 (minor enantiomer), $t_{\rm R}$ = 24.7(major enantiomer), 99% ee

[2*S*,3*R*]-Methyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (4'): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) $t_{\rm R}$ = 28.8 (minor enantiomer), $t_{\rm R}$ = 17.2 (major enantiomer), 99% ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	23.98	2765739	6.2547	61195	6254	1.273	3.443
2	28.5	19470276	44.032	367697	6516.5	1.388	5.989
3	37.37	2923812	6.6122	50532	9317	1.255	2.963
4	42.38	19058633	43.1011	283498	8548.8	1.405	****
		44218460	100	762922			

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	14.71	479086.8	2.197	16245	5244.9	1.357	2.841
2	17.25	21218823	97.3041	589696	5003.8	1.594	10.685
3	25.06	15665	0.0718	760	42465.4	1.066	5.356
4	28.81	93130.6	0.4271	2887	15864.7	1.528	****
		21806705	100	609588			

HPLC Chromatogram of gram scale synthesis product [2*R*,3*S*]-Methyl-1-(2-nitro-1-phenylethyl)-2oxocyclopentanecarboxylate : CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90:10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 16.9 (minor enantiomer), *t*_R = 25.7(major enantiomer), 86% ee

[2*R*,3S]-Methyl-1-(1-(4-Fluorophenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(7): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 16.5 (minor enantiomer), *t*_R = 29.6 (major enantiomer), 72% ee

No	Rt (min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	14.59	352651.9	0.9439	14541	7860.1	1.174	2.804
2	16.57	5067579	13.5638	179912	7680.6	1.41	7.578
3	23.38	525448.2	1.4064	13623	8082.6	1.202	4.813
4	29.64	31415507	84.0859	551899	5764.5	1.839	****
		37361186	100	759975			

[2*R*,3S]-Methyl-1-(1-(4-Bromophenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(8): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 16.6 (minor enantiomer), *t*_R = 25.3 (major enantiomer), 74% ee

[2*R*,3S]-Methyl-1-(1-(4-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(**9**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 19.7 (minor enantiomer), *t*_R = 32.2 (major enantiomer), 68% ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	16.75	269309.2	0.5048	9339	7513.2	1.193	3.463
2	19.73	8335138	15.6245	236360	6871	1.475	5.607
3	25.54	613934	1.1508	14769	8351.4	1.184	4.66
4	32.23	44128110	82.7198	686606	5388.2	1.953	****
		53346491	100	947074			

[2*R*,3S]-Methyl-1-(1-(4-Iodophenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(**10**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 35.5 (minor enantiomer), *t*_R = 43.2 (major enantiomer), 49% ee

[2*R*,3S]-Methyl-1-(1-(4-Methylphenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(11): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R= 28.3 (minor enantiomer), *t*_R = 36.3 (major enantiomer), 52 % ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	17.28	517220	0.7439	23882	14242.4	1.155	3.625
2	20.14	279653.6	0.4022	7148	6504.7	1.038	6.648
3	28.33	16587484	23.8585	308470	5973.9	1.497	4.568
4	36.36	52140177	74.9954	697658	5040.8	1.854	* * * * *

[2*R*,3*S*]-Methyl-1-(2-nitro-1-(naphthalen-2-yl)ethyl)-2-oxocyclopentanecarboxylate(**12**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 30.3 (minor enantiomer), *t*_R = 35.8 (major enantiomer), 67 % ee

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	25.12	3442701	45.5924	92187	9877.1	1.281	4.326
2	30.39	609428.4	8.0708	11429	7274.6	1.161	2.533
3	34.03	392227.6	5.1944	6896	8801	0.977	1.311
4	35.81	3106677	41.1424	66706	12825.8	1.125	****
		7551034	100	177218			

[2*R*,3*S*]-Methyl-1-(1-(3-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(13): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R= 20.8 (minor enantiomer), *t*_R = 26.7 (major enantiomer), 34% ee

[2*R*,3*S*]-Methyl-1-((1-furan-2-yl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(**14**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 13.9 (minor enantiomer), *t*_R = 23.0(major enantiomer), 37% ee

[2*R*,3*S*]-Methyl-1-((1-thien-2-yl)-2-nitroethyl)-2-oxocyclopentanecarboxylate(**15**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) *t*_R = 16.7 (minor enantiomer), *t*_R = 27.9 (major enantiomer), 53% ee

9278535 100 230588

[2R,3S]-Ethyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate(**16**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 90: 10, flow rate 1.0 mL/min, λ = 213 nm) t_{R} = 14.0 (minor enantiomer), t_{R} = 20.8 (major enantiomer), 72% ee

No

1

2

3	17.47	896684.8	1.8449	22450	3855.5	1.588	2.517
4	20.88	40515000	83.3573	711832	2789.1	1.995	****
		48604044	100	945851			

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	7.65	1871335	8.3464	83328	2627	****	0.874
2	8.23	2818888	12.5726	103881	2080.6	****	1.235
3	9.23	6871050	30.6457	204833	1711.3	****	0.817
4	10.16	10859678	48.4354	206378	843.8	****	****

22420951 100 598420

[2*R*,3*S*]-Methyl-2,3-dihydro-2-(2-nitro-1-phenylethyl)-1-oxo-1H-indene-2-carboxylate(**18**): CHIRALCEL OD-H (*n*-hexane: 2-propanol = 80: 20, flow rate 0.8 mL/min, λ = 210 nm) $t_{\rm R}$ = 15.2 (minor enantiomer), $t_{\rm R}$ = 39.0 (major enantiomer), 75% ee

3	39.07	8697945	69.3316	115498	5965.5	1.326	11.848
4	72.63	1430948	11.4061	10555	6363.8	1.156	****
		12545434	100	218135			

No	Rt(min)	Area	Area%	Height	NTP	Symmetry	Resolution
1	13.05	11714248	27.7101	319768	2592.4	1.892	2.95
2	16.3	1177365	2.7851	28337	3074.2	1.512	5.734
3	24.26	2350633	5.5604	41198	3674.3	1.494	11.058
4	54.14	27032013	63.9444	195949	3240.5	1.545	****
		42274259	100	585252			

[2S,3S]- 3-Acetyl-3-(2-nitro-1-phenylethyl)-dihydrofuran-2-one (**20**): CHIRALCEL OD-H (*n*-hexane: EtOH = 80 : 20, flow rate 1.0 mL/min, λ = 210 nm) $t_{\rm R}$ = 24.5 (minor enantiomer), $t_{\rm R}$ = 73.0 (major enantiomer), 32% ee

3	30.17	13004074	32.6193	171845	3402.7	1.618	11.364
4	73.02	12492587	31.3363	60388	2848.4	1.904	****
		39866230	100	513233			

<u>NMR spectra of Michael Adducts</u>

¹H-NMR spectra of [2*R*,3*S*]-Methyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (4)

¹³C-NMR spectra of [2*R*,3*S*]-Methyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (4)

¹H-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Fluorophenyl)-2-nitroethyl)-2-oxocyclopentane carboxylate (7)

¹³C-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Fluorophenyl)-2-nitroethyl)-2-oxocyclopentane carboxylate (7)

¹H-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Bromophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (**8**)

¹C-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Bromophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (**8**)

¹H-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Chlorophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (**9**)

¹³C-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Chlorophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (9)

¹H-NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Iodophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate(**10**)

¹³C -NMR spectra of [2*R*,3S]-Methyl-1-(1-(4-Iodophenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate(**10**)

¹H-NMR spectra of [2*R*, 3S]-Methyl-1-(1-(4-Methylphenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (11)

¹³C-NMR spectra of [2*R*, 3S]-Methyl-1-(1-(4-Methylphenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (**11**)

¹H-NMR spectra of [2*R*,3*S*]-Methyl-1-(2-nitro-1-(naphthalen-2-yl)ethyl)-2oxocyclopentanecarboxylate(**12**)

¹³C-NMR spectra of [2*R*,3*S*]-Methyl-1-(2-nitro-1-(naphthalen-2-yl)ethyl)-2oxocyclopentanecarboxylate(**12**)

¹³C-NMR spectra of [2*R*,3*S*]-Methyl-1-(1-(3-Methoxyphenyl)-2-nitroethyl)-2oxocyclopentanecarboxylate (**13**)

¹H-NMR spectra of [2*R*,3*S*]-Methyl-1-((1-furan-2-yl)-2-nitroethyl)-2-oxocyclopentanecarboxylate (14)

¹³C-NMR spectra of [2*R*,3*S*]-Methyl-1-((1-furan-2-yl)-2-nitroethyl)-2-oxocyclopentanecarboxylate (14)

¹H-NMR spectra of [2*R*,3*S*]- Methyl-1-(1-(thienyl-2-yl)- 2-nitroethyl)-2-oxocyclopentanecarboxylate (15)

¹³C-NMR spectra of [2*R*,3*S*]- Methyl-1-(1-(thienyl-2-yl)- 2-nitroethyl)-2-oxocyclopentanecarboxylate (15)

¹H-NMR spectra of [2*R*,3*S*]-Ethyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate(**16**)

¹³C-NMR spectra of [2*R*,3*S*]-Ethyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate(**16**)

¹H-NMR spectra of [2*R*,3*S*]-*tert*-butyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (17)

¹³C-NMR spectra of [2*R*,3*S*]-*tert*-butyl-1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate (17)

¹H-NMR spectra of [2*R*,3*S*]-Methyl-2,3-dihydro-2-(2-nitro-1-phenylethyl)-1-oxo-1H-indene-2carboxylate-(**18**)

¹³C-NMR spectra of [2*R*,3*S*]-Methyl-2,3-dihydro-2-(2-nitro-1-phenylethyl)-1-oxo-1H-indene-2carboxylate-(**18**)

¹H-NMR spectra of [2*S*,3*S*]- 2-Acetyl-2-(2-nitro-1-phenylethyl)-cyclopentanone (**19**)

¹³C-NMR spectra of [2*S*,3*S*]- 2-Acetyl-2-(2-nitro-1-phenylethyl)-cyclopentanone (19)

¹H-NMR spectra of [2*S*,3*S*]- 3-Acetyl-3-(2-nitro-1-phenylethyl)-dihydrofuran-2-one (**20**)

¹³C-NMR spectra of [2*S*,3*S*]- 3-Acetyl-3-(2-nitro-1-phenylethyl)-dihydrofuran-2-one (**20**)

