Tunable ductility of a nano-network from few-layered graphene bonded with benzene: A molecular dynamics study

The detailed information of critical strains and stresses for all the models mentioned in the text are given in Table S1.

Table S1 The critical strains and stresses in stretching direction of the samples under the strain rate of 0.1%/ps at different temperatures. "Pristine GN" means pristine graphene ribbon. "1st σ " is first peak value of x-stress, and "1st ε_c " is the first critical value of x-strain with respect to breakage of surface layers. "2nd ε_c " is the second critical value with respect to thorough breakage of all the layers.

Т	Pristine GN	P3C2 model				P3C3 model			
	ε _c	1st o/GPa	$1^{st} \epsilon_c$	$2^{nd} \sigma/GPa$	$2^{nd} \epsilon_c$	1 st σ/GPa	$1^{st} \epsilon_c$	$2^{nd} \sigma/GPa$	$2^{nd} \epsilon_c$
8K	27.0%	33.98	19.1%	22.70	28.6%	28.2	19.1%	24.7	28.9%
50K	25.0%	32.69	19.1%	20.61	26.5%	28.0	19.0%	23.1	26.9%
100K	23.8%	31.62	18.5%	20.03	25.8%	27.0	19.2%	22.1	26.7%
200K	23.1%	29.46	17.4%	19.38	25.2%	25.3	18.1%	20.6	25.4%
300K	21.7%	26.22	16.4%	18.12	24.6%	22.4	16.6%	21.0	25.7%
500K	18.5%	19.66	13.6%	15.95	23.2%	14.2	12.9%	17.2	23.3%
Т	Pristine GN	P4C2 model				P4C3 model			
	ε _c	1 st σ/GPa	$1^{st} \epsilon_c$	2 nd <i>o</i> /GPa	$2^{nd} \epsilon_c$	1 st σ/GPa	$1^{st} \epsilon_c$	2 nd <i>o</i> /GPa	$2^{nd} \epsilon_c$
8K	27.0%	26.2	18.4%	22.5	32.2%	20.2	17.4%	24.6	32.2%
50K	25.0%	26.3	19.2%	22.8	33.1%	19.5	18.7%	24.3	33.1%
100K	23.8%	25.2	18.2%	23.1	33.3%	18.0	17.3%	22.7	31.4%
200K	23.1%	22.8	16.7%	21.0	31.0%	15.4	16.5%	21.7	30.1%
300K	21.7%	18.7	14.5%	20.2	30.1%	13.9	14.9%	22.1	30.5%
500K	18.5%	16.1	12.8%	177	28.3%	12.1	13.0%	14.1	24.8%
		10.1	12.070	1111	20.070	12.1			
	Pristine GN	1011	P5C2	model	20.370		P5C3	model	
Т	$\frac{\text{Pristine GN}}{\epsilon_{c}}$	1 st σ/GPa	P5C2 1 st ε _c	model 2 nd σ/GPa	$2^{nd} \varepsilon_c$	l st σ/GPa	P5C3 1 st ε _c	model 2 nd σ/GPa	$2^{nd} \epsilon_c$
Т 8К	$\frac{\text{Pristine GN}}{\epsilon_{c}}$ 27.0%	1 st σ/GPa 22.4	P5C2 $1^{st} ε_c$ 19.2%	$\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 23.3	$\frac{2^{nd} \varepsilon_c}{37.9\%}$	1 st σ/GPa 16.3	$\frac{P5C3}{1^{st} \varepsilon_c}$ 19.1%	model $2^{nd} \sigma/GPa$ 24.9	$\frac{2^{nd} \varepsilon_c}{37.6\%}$
T 8K 50K	Pristine GN ε _c 27.0% 25.0%	1 st σ/GPa 22.4 21.7	P5C2 1 st ε _c 19.2% 17.8%	model 2 nd σ/GPa 23.3 23.7	2 nd ε _c 37.9% 37.7%	1 st σ/GPa 16.3 15.8	P5C3 1 st ε _c 19.1% 18.0%	model 2 nd σ/GPa 24.9 25.2	2 nd ε _c 37.6% 37.4%
T 8K 50K 100K	εc 27.0% 25.0% 23.8%	1 st <i>σ</i> /GPa 22.4 21.7 21.3	P5C2 1 st ε _c 19.2% 17.8% 17.5%	$ model 2nd \sigma/GPa 23.3 23.7 23.7 23.7 $	2 nd ε _c 37.9% 37.7% 37.8%	1 st σ/GPa 16.3 15.8 15.5	P5C3 1 st ε _c 19.1% 18.0% 17.4%	$ model 2nd \sigma/GPa 24.9 25.2 24.6 $	2 nd ε _c 37.6% 37.4% 36.8%
T 8K 50K 100K 200K	εc 27.0% 25.0% 23.8% 23.1%	1 st σ/GPa 22.4 21.7 21.3 20.1	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4%	model 2 nd σ/GPa 23.3 23.7 23.7 21.4	2 nd ε _c 37.9% 37.7% 37.8% 35.9%	1 st σ/GPa 16.3 15.8 15.5 14.4	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0%	model 2 nd σ/GPa 24.9 25.2 24.6 23.9	2 nd ε _c 37.6% 37.4% 36.8% 36.4%
T 8K 50K 100K 200K 300K	εc 27.0% 25.0% 23.8% 23.1% 21.7%	1 st <i>σ</i> /GPa 22.4 21.7 21.3 20.1 18.9	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1%	$ model 2nd \sigma/GPa 23.3 23.7 23.7 21.4 21.7 $	2 nd ε _c 37.9% 37.7% 37.8% 35.9% 36.2%	1st σ/GPa 16.3 15.8 15.5 14.4 13.4	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6%	$ model 2nd \sigma/GPa 24.9 25.2 24.6 23.9 19.2 $	2 nd ε _c 37.6% 37.4% 36.8% 36.4% 32.4%
T 8K 50K 100K 200K 300K 500K	Pristine GN ε _c 27.0% 25.0% 23.8% 23.1% 21.7% 18.5%	1 st <i>σ</i> /GPa 22.4 21.7 21.3 20.1 18.9 15.0	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6%	$ model 2nd \sigma/GPa 23.3 23.7 23.7 21.4 21.7 17.9 $	2 nd ε _c 37.9% 37.7% 37.8% 35.9% 36.2% 33.1%	1st σ/GPa 16.3 15.8 15.5 14.4 13.4 11.5	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6% 12.0%	$ model 2nd \sigma/GPa 24.9 25.2 24.6 23.9 19.2 19.6 $	$\frac{2^{nd} \varepsilon_c}{37.6\%}$ 37.4% 36.8% 36.4% 32.4% 32.9%
T 8K 50K 100K 200K 300K 500K	Pristine GN ε _c 27.0% 25.0% 23.8% 23.1% 21.7% 18.5% Pristine GN	1 st σ/GPa 22.4 21.7 21.3 20.1 18.9 15.0	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6% P6C2	$ \begin{array}{r} model \\ 2^{nd} \sigma/GPa \\ 23.3 \\ 23.7 \\ 23.7 \\ 21.4 \\ 21.7 \\ 17.9 \\ model $	2nd εc 37.9% 37.7% 37.8% 35.9% 36.2% 33.1%	1st σ/GPa 16.3 15.8 15.5 14.4 13.4 11.5	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6% 12.0% P6C3	model 2 nd σ/GPa 24.9 25.2 24.6 23.9 19.2 19.6 model	2 nd ε _c 37.6% 37.4% 36.8% 36.4% 32.4% 32.9%
T 8K 50K 100K 200K 300K 500K T	Pristine GN ε _c 27.0% 25.0% 23.8% 23.1% 21.7% 18.5% Pristine GN ε _c	1 st σ/GPa 22.4 21.7 21.3 20.1 18.9 15.0	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6% P6C2 1 st ε _c	$ \begin{array}{r} model \\ 2^{nd} \sigma/\text{GPa} \\ 23.3 \\ 23.7 \\ 23.7 \\ 21.4 \\ 21.7 \\ 17.9 \\ \hline model \\ 2^{nd} \sigma/\text{GPa} \\ 2^{nd} \sigma$	$\frac{2^{nd} \varepsilon_{c}}{37.9\%}$ $\frac{37.7\%}{37.8\%}$ $\frac{35.9\%}{36.2\%}$ $\frac{33.1\%}{2^{nd} \varepsilon_{c}}$		P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6% 12.0% P6C3 1 st ε _c	model $2^{nd} \sigma/GPa$ 24.9 25.2 24.6 23.9 19.2 19.6 model $2^{nd} \sigma/GPa$	$\frac{2^{nd} \varepsilon_{c}}{37.6\%}$ 37.4% 36.8% 36.4% 32.4% 32.9% 2 nd ε_{c}
T 8K 50K 100K 200K 300K 500K T 8K	$\begin{tabular}{ c c c c c } \hline Pristine GN \\ \hline ϵ_c \\ 27.0\% \\ 25.0\% \\ 23.8\% \\ 23.1\% \\ 23.1\% \\ 21.7\% \\ 18.5\% \\ \hline Pristine GN \\ \hline ϵ_c \\ 27.0\% \\ \hline \end{tabular}$	1 st σ/GPa 22.4 21.7 21.3 20.1 18.9 15.0 1 st σ/GPa 22.2	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6% P6C2 1 st ε _c 18.7%	$ model 2nd \sigma/GPa 23.3 23.7 23.7 21.4 21.7 17.9 model 2nd \sigma/GPa 23.5 $	$ \begin{array}{r} 2^{nd} \ \varepsilon_c \\ 37.9\% \\ 37.7\% \\ 37.8\% \\ 35.9\% \\ 36.2\% \\ 33.1\% \\ \end{array} $	$ \begin{array}{r} 1^{\text{st}} \sigma/\text{GPa} \\ 16.3 \\ 15.8 \\ 15.5 \\ 14.4 \\ 13.4 \\ 11.5 \\ \hline 1^{\text{st}} \sigma/\text{GPa} \\ 16.1 \end{array} $	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6% 12.0% P6C3 1 st ε _c 18.5%	$\frac{model}{2^{nd} \sigma/GPa}$ 24.9 25.2 24.6 23.9 19.2 19.6 model 2^{nd} \sigma/GPa 23.3	$ \begin{array}{r} 2^{nd} \varepsilon_{c} \\ 37.6\% \\ 37.4\% \\ 36.8\% \\ 36.4\% \\ 32.4\% \\ 32.9\% \\ \hline 2^{nd} \varepsilon_{c} \\ 39.6\% \\ \end{array} $
T 8K 50K 100K 200K 300K 500K T 8K 50K	Pristine GN ε _c 27.0% 25.0% 23.8% 23.1% 21.7% 18.5% Pristine GN ε _c 27.0% 25.0%	1 st <i>σ</i> /GPa 22.4 21.7 21.3 20.1 18.9 15.0 1 st <i>σ</i> /GPa 22.2 21.8	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6% P6C2 1 st ε _c 18.7% 18.4%	$\begin{array}{r} model \\ \hline 2^{nd} \ \sigma/GPa \\ \hline 23.3 \\ 23.7 \\ 23.7 \\ 21.4 \\ 21.7 \\ 17.9 \\ \hline model \\ \hline 2^{nd} \ \sigma/GPa \\ \hline 23.5 \\ 23.5 \\ \hline 23.5 \\ \hline 23.5 \\ \hline 23.5 \\ \hline \end{array}$	$ \begin{array}{r} 2^{nd} \ \varepsilon_c \\ 37.9\% \\ 37.7\% \\ 37.8\% \\ 35.9\% \\ 36.2\% \\ 33.1\% \\ \hline 2^{nd} \ \varepsilon_c \\ 43.3\% \\ 43.5\% \\ \end{array} $	$ \begin{array}{r} 1^{\text{st}} \sigma/\text{GPa} \\ 16.3 \\ 15.8 \\ 15.5 \\ 14.4 \\ 13.4 \\ 11.5 \\ \hline 1^{\text{st}} \sigma/\text{GPa} \\ \hline 16.1 \\ 15.8 \\ \hline 15.8 \\ \hline 16.1 \\ 15.8 \\ \hline 15.8 \\ 16.1 \\ 15.8 \\ $	P5C3 1 st ε _c 19.1% 18.0% 17.4% 16.0% 14.6% 12.0% P6C3 1 st ε _c 18.5% 18.5% 18.0%	$\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 24.9 25.2 24.6 23.9 19.2 19.6 model 2^{\text{nd}} \sigma/\text{GPa} 23.3 23.8	$\frac{2^{nd} \varepsilon_{c}}{37.6\%}$ 37.4% 36.8% 36.4% 32.4% 32.9% $\frac{2^{nd} \varepsilon_{c}}{39.6\%}$ 40.8%
T 8K 50K 100K 200K 300K 500K T 8K 50K 100K	$\begin{tabular}{ c c c c c } \hline Pristine GN \\ \hline ϵ_c \\ \hline 27.0% \\ \hline 25.0% \\ \hline 23.1% \\ \hline 23.1% \\ \hline 23.1% \\ \hline 21.7% \\ \hline 18.5% \\ \hline \hline $Pristine GN$ \\ \hline ϵ_c \\ \hline 27.0% \\ \hline 25.0% \\ \hline 23.8% \\ \hline \end{tabular}$	1 st σ/GPa 22.4 21.7 21.3 20.1 18.9 15.0 1 st σ/GPa 22.2 21.8 21.2	P5C2 1 st ε _c 19.2% 17.8% 17.5% 16.4% 15.1% 11.6% P6C2 1 st ε _c 18.7% 18.4% 17.6%	$ model 2^{nd} \sigma/GPa 23.3 23.7 23.7 21.4 21.7 17.9 model 2^{nd} \sigma/GPa 23.5 23.5 17.4 $	$ \begin{array}{r} 2^{nd} \ \varepsilon_c \\ 37.9\% \\ 37.7\% \\ 37.8\% \\ 35.9\% \\ 36.2\% \\ 33.1\% \\ \hline 2^{nd} \ \varepsilon_c \\ 43.3\% \\ 43.5\% \\ 37.8\% \\ 37.8\% \\ \end{array} $	$ \begin{array}{r} 1^{st} \sigma/\text{GPa} \\ 16.3 \\ 15.8 \\ 15.5 \\ 14.4 \\ 13.4 \\ 11.5 \\ \hline 1^{st} \sigma/\text{GPa} \\ 16.1 \\ 15.8 \\ 15.0 \\ \hline 15.0 \\ \hline 1^{st} 5.0 \\ 1^$	$\begin{array}{c} P5C3 \\ 1^{st} \varepsilon_{c} \\ 19.1\% \\ 18.0\% \\ 17.4\% \\ 16.0\% \\ 14.6\% \\ 12.0\% \\ \hline P6C3 \\ 1^{st} \varepsilon_{c} \\ 18.5\% \\ 18.0\% \\ 16.8\% \\ \end{array}$	$\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 24.9 25.2 24.6 23.9 19.2 19.6 model 2^{\text{nd}} \sigma/\text{GPa} 23.3 23.8 23.9	$\frac{2^{nd} \varepsilon_{c}}{37.6\%}$ 37.6% 37.4% 36.8% 36.4% 32.4% 32.9% $\frac{2^{nd} \varepsilon_{c}}{39.6\%}$ 40.8% 41.3%
T 8K 50K 100K 200K 300K 500K T 8K 50K 100K 200K	ϵ_c 27.0% 25.0% 23.8% 23.1% 21.7% 18.5% Pristine GN ϵ_c 27.0% 23.1% 23.1% 23.1%	$\frac{1^{\text{st}} \sigma/\text{GPa}}{22.4}$ 21.7 21.3 20.1 18.9 15.0 1^{\text{st}} \sigma/\text{GPa} 22.2 21.8 21.2 20.0	$\begin{array}{c} P5C2 \\ \hline P5C2 \\ \hline 1^{st} \ \varepsilon_c \\ \hline 19.2\% \\ \hline 17.8\% \\ \hline 17.5\% \\ \hline 16.4\% \\ \hline 15.1\% \\ \hline 11.6\% \\ \hline \\ \hline P6C2 \\ \hline 1^{st} \ \varepsilon_c \\ \hline 18.7\% \\ \hline 18.4\% \\ \hline 17.6\% \\ \hline 16.2\% \\ \end{array}$	$\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 23.3 23.7 23.7 21.4 21.7 17.9 $\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 23.5 23.5 17.4 21.7	$ \begin{array}{r} 2^{nd} \ \varepsilon_c \\ 37.9\% \\ 37.7\% \\ 37.8\% \\ 35.9\% \\ 36.2\% \\ 33.1\% \\ \hline 2^{nd} \ \varepsilon_c \\ 43.3\% \\ 43.5\% \\ 37.8\% \\ 41.3\% \\ \end{array} $	$ \begin{array}{r} 1^{st} \sigma/\text{GPa} \\ 16.3 \\ 15.8 \\ 15.5 \\ 14.4 \\ 13.4 \\ 11.5 \\ \hline 1^{st} \sigma/\text{GPa} \\ 16.1 \\ 15.8 \\ 15.0 \\ 14.4 \\ 14.4 \\ \end{array} $	$\begin{array}{c} P5C3\\ 1^{st} \ \varepsilon_c\\ 19.1\%\\ 18.0\%\\ 17.4\%\\ 16.0\%\\ 14.6\%\\ 12.0\%\\ \hline \\ P6C3\\ 1^{st} \ \varepsilon_c\\ 18.5\%\\ 18.0\%\\ 16.8\%\\ 15.9\%\\ \end{array}$	$\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 24.9 25.2 24.6 23.9 19.2 19.6 $\frac{\text{model}}{2^{\text{nd}} \sigma/\text{GPa}}$ 23.3 23.8 23.9 20.5	$\frac{2^{nd} \varepsilon_{c}}{37.6\%}$ 37.4% 36.8% 36.4% 32.4% 32.9% $\frac{2^{nd} \varepsilon_{c}}{39.6\%}$ 40.8% 41.3% 38.8%

500K	18.5%	16.1	12.6%	17.9	38.0%	10.6	11.1%	16.0	33.0%
------	-------	------	-------	------	-------	------	-------	------	-------