Supporting Information

Synthetic and thermal studies of insensitive energetic materials based

on oxidation of melamine structure

Jiarong Zhang^{a, c}, Fuqiang Bi^{*b,c}, Junlin Zhang^c, Xiaohong Wang^c, Zhi Yang^a, Guofang Zhang^b, Bozhou Wang^{*c}

^a. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR

China

^b. Key Laboratory of Applied Surface and Colloid Chemistry, MOE / School of Chemistry and Chemical

Engineering, Shaanxi Normal University, Xi'an 710062, PR China

c. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute,

Xi'an 710065, PR China

Corresponding authors Prof. Bozhou Wang E-mail address: <u>wbz600@163.com</u> Dr. Fuqiang Bi E-mail address: <u>bifuqiang@gmail.com</u>

Contents

Page S3 Crystallographic data, hydrogen bonds and Crystal structure

Page S8 NMR spectra

Page S12 IR spectra

Page S14 Sample images

Crystallographic data

The apparatus and conditions of crystal structure determination

A single crystal of MDO·4H₂O suitable for X-ray diffraction analysis was prepared by slow evaporation of H₂O solvent at room temperature. A colorless crystal with dimension of 0.34×0.26×0.15 mm was selected for X-ray single crystal diffraction analysis. The diffraction data were collected on a BRUKER SMART Apex II CCD Xray diffractometer equipped with a Mo K α radiation (λ =0.71073 A) using an ω - θ scan mode at 153(2) K. A total of 10161 reflections were obtained in the range of 3.19≤0≤25.09-, of which 1764 were independent (*R* int =0.0280) were considered to be observed and used for the refinement. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F² using SHELES-97 and SHELXL-97 programs. A full-matrix least-squares refinement gave the final *R*₁= 0.0297 and ωR_2 = 0.0796(ω =1/[$\sigma^2(F_0^2)$ + (0.0270 *P*)² + 0.0000 *P*], where *P* =(F_0^2 +2 F_c^2)/3). The goodness-of-fit on F^2 is 1.058. The largest difference peak and hole were 0.252 and -0.191 e/Å³

Compound	$MDO \cdot 4H_2O$
Empirical formula	$C_{3}H_{14}N_{6}O_{6}$
Molar mass (g/mol)	230.20
Temperature (K)	153(2)
Crystal system	Monoclinic
Space group	<i>P</i> 2(1)/n
Crystal size (mm)	0.34 x 0.26 x 0.15
<i>a</i> (Å)	8.923(2)
<i>b</i> (Å)	6.9505(18)
<i>c</i> (Å)	16.162(4)
α (°)	114.227(6)
eta (°)	94.259(9)

Table S1. Crystal data and structure refinement parameters for $MDO \cdot 4H_2O$

γ (°)	107.386(6)
$V(\text{\AA }^3)$	999.6(4)
Ζ	4
h	-10<= <i>h</i> <=10
k	-8<= <i>k</i> <=8
l	-19<= <i>l</i> <=19
$Dc (g/cm^3)$	1.530
λ (Å)	0.71073
μ (Mo K) (mm ⁻¹)	0.142
<i>F</i> (0 0 0)	488
θ range (°)	3.19-25.09
Measured reflections	10161
Unique data (Rint)	1764 (0.0280)
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]	0.0297,0.0796
R1, wR2 (all data)	0.0313, 0.0810
Goodness-of-fit	1.058
δp max, δp min (e/ Å ³)	0.252, -0.191
CCDC number	1947761

Table S2. Selected bond lengths (Å) and bong angles (°) of MDO \cdot 4H₂O.

Bond	Dist.	Bond	Dist.
N(1)-C(1)	1.2993(16)	N(1)-H(1A)	0.8800
N(1)-H(1B)	0.8800	N(2)-O(1)	1.3516(13)
N(2)-C(1)	1.3558(16)	N(2)-C(2)	1.3651(16)
N(3)-C(2)	1.3218(16)	N(3)-H(3A)	0.8800
N(3)-H(3B)	0.8800	N(4)-C(2)	1.3343(16)
N(4)-C(3)	1.3414(16)	N(5)-C(3)	1.3120(16)
N(5)-H(5A)	0.8800	N(5)-H(5B)	0.8800
N(6)-C(1)	1.3516(16)	N(6)-O(2)	1.3622(13)
N(6)-C(3)	1.3682(16)	O(3)-H(3C)	0.828(9)
O(3)-H(3D)	0.827(9)	O(4)-H(4C)	0.820(10)
O(4)-H(4D)	0.829(10)	O(5)-H(5C)	0.833(9)
O(5)-H(5D)	0.834(10)	O(6)-H(6C)	0.823(10)

O(6)-H(6D)	0.841(9)		
Angle	(°)	Angle	(°)
C(1)-N(1)-H(1A)	120.0	C(1)-N(1)-H(1B)	120.0
H(1A)-N(1)-H(1B)	120.0	O(1)-N(2)-C(1)	118.36(10)
O(1)-N(2)-C(2)	120.35(10)	C(1)-N(2)-C(2)	121.29(10)
C(2)-N(3)-H(3A)	120.0	C(2)-N(3)-H(3B)	120.0
H(3A)-N(3)-H(3B)	120.0	C(2)-N(4)-C(3)	118.03(10)
C(3)-N(5)-H(5A)	120.0	C(3)-N(5)-H(5B)	120.0
H(5A)-N(5)-H(5B)	120.0	C(1)-N(6)-O(2)	118.44(10)
C(1)-N(6)-C(3)	120.34(10)	O(2)-N(6)-C(3)	121.13(10)
H(3C)-O(3)-H(3D)	107.6(19)	H(4C)-O(4)-H(4D)	108.7(19)
H(5C)-O(5)-H(5D)	102.3(19)	H(6C)-O(6)-H(6D)	107(2)
N(1)-C(1)-N(6)	121.22(11)	N(1)-C(1)-N(2)	121.31(11)
N(6)-C(1)-N(2)	117.47(11)	N(3)-C(2)-N(4)	122.28(11)
N(3)-C(2)-N(2)	116.73(11)	N(4)-C(2)-N(2)	121.00(11)
N(5)-C(3)-N(4)	22.03(11)	N(5)-C(3)-N(6)	116.22(11)
N(4)-C(3)-N(6)	121.74(11)		

Table S3. Hydrogen bond lengths (Å) and bong angles (°) of MDO \cdot 4H₂O

D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	∠DHA(°)
N1-H1AO5	0.880	1.969	2.792	155.01
N1-H1BO4	0.880	2.059	2.844	148.17
N3-H3AO4	0.880	2.085	2.890	151.76
N3-H3BO3	0.880	2.210	3.043	157.62
N5-H5AO6	0.880	1.989	2.822	157.42
N5-H5BO2	0.880	2.076	2.850	146.37
O3-H3CO2	0.828	1.989	2.815	175.77
O4-H4CO3	0.820	2.070	2.879	169.22
O5-H5CO1	0.833	1.775	2.601	170.94
O5-H5CN2	0.833	2.614	3.410	160.50
O6-H6CO5	0.823	1.977	2.781	165.43
O3-H3DO6	0.826	2.010	2.810	163.05
O4-H4DO2	0.829	1.955	2.779	171.90
O4-H4DN6	0.829	2.628	3.319	141.72

O5-H5DN4	0.834	2.196	2.975	155.31
O6-H6DO1	0.841	1.839	2.675	172.21

X-Ray crystal structure

Figure S1. The molecular structure of MDO.

Figure S2. The packing diagram of MDO.

NMR spectra

Figure S3. ¹H NMR spectrum of MDO.

Figure S4. ¹³C NMR spectrum of MDO (* is residual trifluoroacetic acid solvent peak).

Figure S5. ¹H NMR spectrum of MDOP.

Figure S6. ¹³C NMR spectrum of MDOP.

Figure S7. ¹H NMR spectrum of MDODA.

Figure S8. ¹³C NMR spectrum of MDODA.

Figure S9. ¹H NMR spectrum of MDOMN.

Figure S10. ¹³C NMR spectrum of MDOMN.

IR spectra

Figure S12. IR spectrum of MDOP.

Figure S14. IR spectrum of MDOMN.

Samples images

Figure S15. MDO sample.

Figure S16. MDO crystal sample.