Electronic Supplementary Information for

Precise synthesis of amphiphilic diblock copolymers consisting of various ionic liquid-type segments and their influence on physical gelation behavior in water

Daichi Yokota, Arihiro Kanazawa, and Sadahito Aoshima*

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Contents:

Figure S1. ¹H NMR spectrum of ODVE_n-b-CEVE_m.

Figure S2. Synthesis of ODVE₅₀-co-CEVE₄₀₀ by living cationic copolymerization.

Figure S3. ¹H NMR spectra of PhOVE₅₀ and PhOVE₅₀-*b*-CEVE₄₀₀.

Figure S4. ¹H NMR spectra of $IBVE_{50}$ -*b*- $CEVE_{400}$, $IBVE_{50}$ -*b*- $[MeIm][BF_4]_{400}$, $IBVE_{50}$ -*b*- $[EtIm][BF_4]_{400}$, and $IBVE_{50}$ -*b*- $[BuIm][BF_4]_{400}$.

Table S1. Critical gelation concentration and physical gelation temperature of $IBVE_n$ -*b*-[Me₂Im][BF₄]₄₀₀ in 1 wt% aqueous solution.

Figure S5. Photograph of physical gelation behavior of $ODVE_{10}-b-[Me_2Im][BF_4]_{400}$ in 0.6 wt% aqueous solution.

Figure S6. Frequency dependence of dynamic moduli, storage modulus *G*' and loss modulus *G*'' of PhOVE_{*n*}-*b*-[Me₂Im][BF₄]₄₀₀ (n = 50 and 100) in 10 wt% aqueous solutions at 55 °C.

Table S2. Status of aqueous solutions of various amphiphilic block copolymers at different concentrations.

Figure S1. ¹H NMR spectrum of $ODVE_n$ -*b*- $CEVE_m$: $[ODVE]_0 = 0.20$ M, $[CEVE]_{add} = 1.6$ M, $[IBEA]_0 = 4.0$ mM, $[Et_{1.5}AlCl_{1.5}]_0 = 20$ mM, [ethyl acetate] = 1.0 M in toluene at 20 °C. (in CDCl₃ at 30 °C)

Figure S2. Synthesis of ODVE₅₀-*co*-CEVE₄₀₀ by living cationic copolymerization (entry 23, Table 1). (A) Time-conversion plots of the copolymerization, (B) the M_n values, and (C) MWD curves of the products obtained: [ODVE]₀ = 0.20 M, [CEVE]₀ = 1.6 M, [IBEA]₀ = 4.0 mM, [Et_{1.5}AlCl_{1.5}]₀ = 5.0 mM, [SnCl₄]₀ = 10 mM, [DTBP]₀ = 10 mM, [1,4-dioxane] = 1.2 M in toluene at 20 °C.

Figure S3. ¹H NMR spectra of (A) PhOVE₅₀ (the upper curve in Figure 4B) and (B) PhOVE₅₀-*b*-CEVE₄₀₀ (entry 25, Table 1; the lower curve in Figure 4B) (in CDCl₃ at 30 °C; * monomer, solvent, toluene, water, grease, TMS).

Figure S4. ¹H NMR spectra of (A) $IBVE_{50}$ -*b*- $CEVE_{400}$ in $CDCl_3$ at 30 °C, (B) $IBVE_{50}$ -*b*- $[MeIm][BF_4]_{400}$, (C) $IBVE_{50}$ -*b*- $[EtIm][BF_4]_{400}$, and (D) $IBVE_{50}$ -*b*- $[BuIm][BF_4]_{400}$ in DMSO-*d*₆ at 100 °C; *solvent, toluene, H₂O.

400		0.1			
	$IBVE_n-b-$	Critical			
Entry	$[Me_2Im][BF_4]_{400}$	Gelation			
	n =	Concentration ^b			
1	10	3 wt%			
2	20	0.4 wt%			
3	30	0.6 wt%			
4	40	0.6 wt%			
5	50	0.7 wt%			
6	100	1 wt%			
7	200	Insoluble			

Table S1. Critical gelation concentration and physical gelation temperature of $IBVE_n$ -*b*-[Me₂Im][BF₄]₄₀₀ in 1 wt% aqueous solution.

^{*a*} Determined by ¹H NMR spectra of copolymers before and after chemical modifications. ^{*b*} Status of solution at 60 °C.

ODVE₁₀-*b*-[Me₂Im][BF₄]₄₀₀ in 0.6 wt%

Figure S5. Photograph of physical gelation behavior of $ODVE_{10}$ -b- $[Me_2Im][BF_4]_{400}$ in 0.6 wt% aqueous solution

Figure S6. Frequency dependence of dynamic moduli, storage modulus *G*' (filled symbols) and loss modulus *G*'' (open symbols) of PhOVE_{*n*}-*b*-[Me₂Im][BF₄]₄₀₀ (n = 50 and 100) in 10 wt% aqueous solutions at 55 °C.

Entry	II. due als als às	Unit	Cation	Anion	Unit	Conc. (wt%)			
	Hydrophobic					1	0.4	0.2	0.1
1	PhOVE	50	Me ₂ Im	BF ₄	400	Gel	Sol	Sol	Sol
2	IBVE	20	MeIm	Cl	800	Gel	Sol	_	_
3	ODVE	10	Me ₂ Im	BF ₄	400	Gel	Sol	_	_
4	ODVE	10	MeIm	BF_4	800	Gel	Sol	_	_
5	ODVE	10	MeIm	Cl	800	Gel	Gel	Gel	Sol
6	ODVE	10	MeIm	BF_4	1200	Gel	Sol	_	_
7	ODVE	10	MeIm	Cl	1200	Gel	Sol	_	_
8	ODVE	20	Me ₂ Im	BF_4	400	Sol	_	_	_
9	ODVE	20	Me ₂ Im	BF ₄	800	Gel	Sol	_	_
10	ODVE	20	Me ₂ Im	Cl	800	Gel	Gel	Sol	_
11	ODVE	20	MeIm	BF_4	800	Sol	_	_	_
12	ODVE	20	MeIm	Cl	800	Gel	Sol	_	_
13	ODVE	20	MeIm	BF ₄	1200	Sol	_	_	_
14	ODVE	20	MeIm	Cl	1200	Gel	Sol	_	_

Table S2. Status of aqueous solutions of various amphiphilic block copolymers at different concentrations.

^a Determined using the test-tube inversion method (gel: retention, sol: flow) at 50 °C.