Supporting Information

Effective oil-water mixture separation and photocatalytic dye decontamination through Nickel-dimethylglyoxime microtubes Coated Superhydrophobic and Superoleophilic films

Jinxiu Ma^a, Wen Meng, a Lahong Zhang, Feng Li, *a, b Taohai Li *a, b

^b Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Finland.

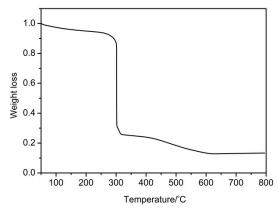


Figure S1. Thermal gravimetric analysis of [Ni(DMG)₂].

^a College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan. Fax: 86-731-58292251; Tel: 86-731-58292202; E-mail: fengli_xtu@hotmail.com; hnlth@xtu.edu.cn

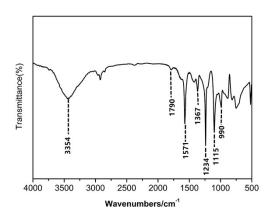


Figure S2. The FTIR spectrum of $[Ni(DMG)_2]$.

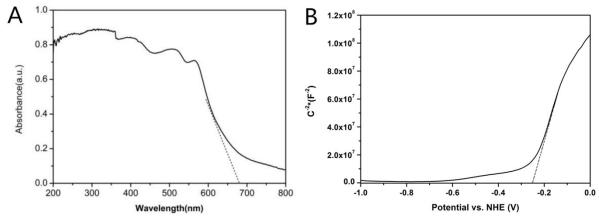


Figure S3. (A)UV-vis diffuse reflectance spectra of $[Ni(DMG)_2]$; (B) Mott-Schottky plots of $[Ni(DMG)_2]$.

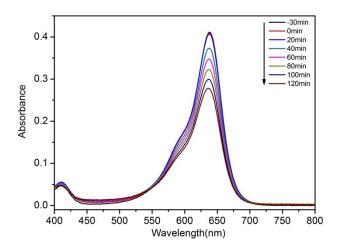


Figure S4. Time evolution of the spectra during the photodegradation of quinoline blue with $[Ni(DMG)_2]$ powder mediated under UV light irradiation.

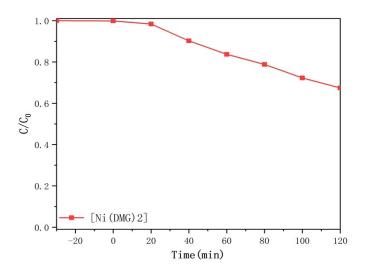


Figure S5. Photodegradation time-change diagram of $[Ni(DMG)_2]$ powder samples under ultraviolet light with QB.

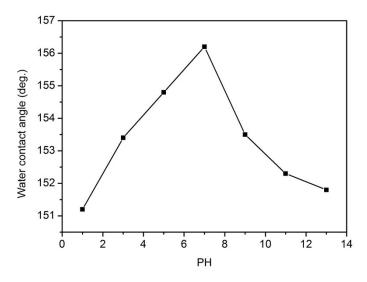


Figure S6. The water droplet CA values according to the coatings immersed in different PH solutions.

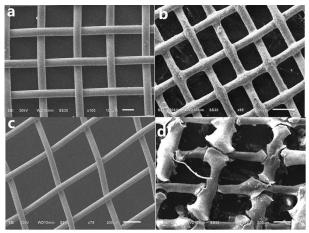


Figure S7. SEM images of $[Ni(DMG)_2]$ printed on iron wire mesh and copper grid (b and d); SEM images of pure iron wire mesh and copper grid without modifying by $[Ni(DMG)_2]$ (a and c).

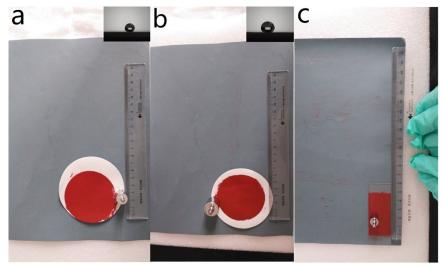


Figure S8. The sandpaper-abrasion tests on the superhydrophobic surfaces of [Ni(DMG)₂] printed on filter paper and glass slide.

Photocatalytic	shape	Photocatalytic	Reusability	Stability	superhydrophobicity
additive		efficiency			
[Ni(DMG) ₂]	film	91%	reusable	stable	superhydrophobic
MnV_2O_6	powder	72%	nonreusable	instable	hydrophile
Ag ₃ PO ₄	powder	57.3%	nonreusable	instable	hydrophile

Table S1. [Ni $(DMG)_2$] comparison with other transition metal complex-based catalysts

- Video S1. Video of [Ni(DMG)₂] printed on filter cloth for separation oil from water
- Video S2. Video of [Ni(DMG)₂] printed on filter paper for separation oil from water
- Video S3. Video of [Ni(DMG)₂] printed on filter paper for separation oil from water
- Video S4. Video of [Ni(DMG)₂] printed on copper grid for separation oil from water
- Video S5. Video of [Ni(DMG)₂] printed on iron mesh for separation oil from water
- Video S6. Video of the knife-scratch test on the superhydrophobic surface of [Ni(DMG)₂] printed on filter paper.
- Video S7. Video of the sandpaper-abrasion test on the superhydrophobic surface of $[Ni(DMG)_2]$ printed on filter paper under the weight of 20g.
- Video S8. Video of the sandpaper-abrasion test on the superhydrophobic surface of [Ni(DMG)₂] printed on filter paper under the weight of 50g.
- Video S9. Video of the sandpaper-abrasion test on the superhydrophobic surface of $[Ni(DMG)_2]$ printed on glass slide under the weight of 5g.