Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

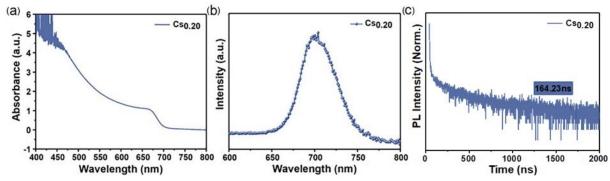
Supporting Information

Lattice Reconstruction of Cs-Introduced FAPbI_{1.80}Br_{1.20} Enables Improved Stability for Perovskite Solar Cells

Shuang Chen, Lu Pan, Tao Ye, Nuo Lei, Yijun Yang and Xi Wang*
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China.

^{*} Corresponding author email: <u>xiwang@bjtu.edu.cn</u>.

Fig. S2 XRD spectrum of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$ perovskite film.



 $\textbf{Fig. S4} \ \text{XRD spectrum of FAPbI}_{1.80} \text{Br}_{1.20} \ \text{perovskite film}.$

 $\textbf{Fig. S5} \ \ \text{Optical characterization of } \ FAPbI_{1.80}Br_{1.20}. \text{ (a)} \ \ Absorption \ \ spectrum \ of } \ FAPbI_{1.80}Br_{1.20} \ \ \text{film. (b)} \\ Photoluminescence \ \ spectrum \ \ of \ FAPbI_{1.80}Br_{1.20} \ \text{film. (c)} \ \ TRPL \ \ spectrum \ \ of \ FAPbI_{1.80}Br_{1.20} \ \text{film.}$

 $\label{eq:Fig.S6} \textbf{Fig.} \quad \textbf{S6} \quad \text{Optical} \quad \text{characterization} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20}. \text{ (a)} \quad \text{Absorption} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film. (b)} \quad \text{Photoluminescence} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film. (c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{of} \quad \text{Cs}_{0.20}\text{FA}_{0.80}\text{PbI}_{1.80}\text{Br}_{1.20} \quad \text{film.} \quad \text{(c)} \quad \text{TRPL} \quad \text{spectrum} \quad \text{(c)} \quad \text{TRPL} \quad \text{(c)} \quad \text{($

Fig. S8 Mixed-halide perovskite films heated on a 200 °C hotplate inside a N_2 -filled glovebox for 2 hours. Zoom-in corresponding to the $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ perovskite films.

Fig. S9 Stability test (environmental condition 25 °C, 55-60% humidity). Zoom-in corresponding to the $Cs_{0.05}FA_{0.95}PbI_{1.80}Br_{1.20}$ perovskite films.

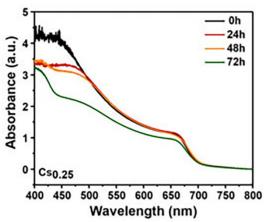

Fig. S10 Stability test (environmental condition 25 °C, 55-60% humidity). Zoom-in corresponding to the $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ perovskite films.

Fig. S11 Air stability and film formation dependence on processing conditions. UV-visible absorption of $Cs_{0.05}FA_{0.95}PbI_{1.80}Br_{1.20}$ films for 0 h, 24 h, 48 h, 72 h in wet.

 $\textbf{Fig. S12} \ \, \text{Air stability and film formation dependence on processing conditions. UV-visible absorption of } \\ Cs_{0.15}FA_{0.85}PbI_{1.80}Br_{1.20} \ \, \text{films for 0 h, 24 h, 48 h, 72 h in wet.} \\$

Fig. S13 Air stability and film formation dependence on processing conditions. UV- visible absorption of $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ films for 0 h, 24 h, 48 h, 72 h in wet.

 $\textbf{Fig. S14} \ Liquid-state \ ^{13}\text{C-NMR} \ spectrum \ of \ Cs_{0.05}\text{FA}_{0.95}\text{PbI}_{1.80} Br_{1.20} \ precipitate \ powder \ in \ DMSO-d_6.$

 $\textbf{Fig. S15} \ Liquid-state \ ^{13}\text{C-NMR} \ spectrum \ of \ Cs_{0.15}\text{FA}_{0.85} PbI_{1.80} Br_{1.20} \ precipitate \ powder \ in \ DMSO-d_6.$

 $\textbf{Fig. S16} \ \, \text{Liquid-state} \ \, ^{13}\text{C-NMR} \ \, \text{spectrum of Cs}_{0.25}\text{FA}_{0.75}\text{PbI}_{1.80}\text{Br}_{1.20} \ \, \text{precipitate powder in DMSO-d}_{6}.$

Fig. S17 Stability test (environmental condition 25 °C, 55-60% humidity). XPS spectra of I $3d_{3/2}$ and I $3d_{5/2}$ of $Cs_xFA_{1-x}PbI_{1.80}Br_{1.20}$ (x = 0.05, 0.15, 0.25) perovskite thin films in wet.

Fig. S18 Stability test (environmental condition 25 °C, 55-60% humidity). XPS spectra of Pb $4f_{5/2}$ and Pb $4f_{7/2}$ of $Cs_xFA_{1-x}PbI_{1.80}Br_{1.20}$ (x = 0.05, 0.15, 0.25) perovskite thin films in wet.

 $\textbf{Fig. S20} \text{ XPS spectrum of Cs } 3d_{3/2} \text{ and Cs } 3d_{5/2} \text{ of } Cs_{0.15}FA_{0.85}PbI_{1.80}Br_{1.20} \text{ perovskite thin film.}$

 $\textbf{Fig. S21} \text{ XPS spectrum of Cs } 3d_{3/2} \text{ and Cs } 3d_{5/2} \text{ of } Cs_{0.25} FA_{0.75} PbI_{1.80} Br_{1.20} \text{ perovskite thin film.}$

Fig. S22 XPS spectra for different Cs/FA ratio mixed cation thin films.

 $\textbf{Fig. S23} \ \ \text{Device structure of PSCs with glass/FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au.}$

Fig. S24 Steady-state PCE and current density of the champion device ($Cs_{0.15}$) measured at maximum-power point of 0.86 V.

 $\label{eq:potential} \textbf{Potential / V} \\ \textbf{Fig. S25} \text{ J-V curves of the champion device (Cs}_{0.15}) \text{ in reverse and forward scan directions.}$

Perovskite	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Lifetime (ns)
$Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$	33.44	2.05	10.0	170.74	164.23
$Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$	91.34	2.82	10.03	94.06	74.49
FAPbl _{1.80} Br _{1.20}	16.24	12.94	1.19	73.71	30.84