Supporting Information

Lattice Reconstruction of Cs-Introduced FAPbI_{1.80}Br_{1.20} Enables Improved Stability for Perovskite Solar Cells

Shuang Chen, Lu Pan, Tao Ye, Nuo Lei, Yijun Yang and Xi Wang*

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department

of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China.

* Corresponding author email: <u>xiwang@bjtu.edu.cn</u>.

Fig. S2 XRD spectrum of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$ perovskite film.

Fig. S4 XRD spectrum of $FAPbI_{1.80}Br_{1.20}$ perovskite film.

Fig. S5 Optical characterization of FAPbI_{1.80}Br_{1.20}. (a) Absorption spectrum of FAPbI_{1.80}Br_{1.20} film. (b) Photoluminescence spectrum of FAPbI_{1.80}Br_{1.20} film. (c) TRPL spectrum of FAPbI_{1.80}Br_{1.20} film.

Fig. S6 Optical characterization of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$. (a) Absorption spectrum of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$ film. (b) Photoluminescence spectrum of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$ film. (c) TRPL spectrum of $Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$ film.

Fig. S7 Optical characterization of $Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$. (a) Absorption spectrum of $Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$ film. (b) Photoluminescence spectrum of $Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$ film. (c) TRPL spectrum of $Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$ film.

Fig. S8 Mixed-halide perovskite films heated on a 200 °C hotplate inside a N₂-filled glovebox for 2 hours. Zoom-in corresponding to the $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ perovskite films.

Fig. S9 Stability test (environmental condition 25 °C, 55-60% humidity). Zoom-in corresponding to the $Cs_{0.05}FA_{0.95}PbI_{1.80}Br_{1.20}$ perovskite films.

Fig. S10 Stability test (environmental condition 25 °C, 55-60% humidity). Zoom-in corresponding to the $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ perovskite films.

Fig. S11 Air stability and film formation dependence on processing conditions. UV-visible absorption of $Cs_{0.05}FA_{0.95}PbI_{1.80}Br_{1.20}$ films for 0 h, 24 h, 48 h, 72 h in wet.

Fig. S12 Air stability and film formation dependence on processing conditions. UV- visible absorption of $Cs_{0.15}FA_{0.85}PbI_{1.80}Br_{1.20}$ films for 0 h, 24 h, 48 h, 72 h in wet.

Fig. S13 Air stability and film formation dependence on processing conditions. UV- visible absorption of $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ films for 0 h, 24 h, 48 h, 72 h in wet.

 $\label{eq:Fig.S14} \textbf{Fig. S14} \ Liquid-state \ {}^{13}\text{C-NMR} \ spectrum \ of \ Cs_{0.05}FA_{0.95}PbI_{1.80}Br_{1.20} \ precipitate \ powder \ in \ DMSO-d_6.$

 $\label{eq:Fig.S15} \textbf{Fig. S15} \ Liquid-state \ {}^{13}\text{C-NMR} \ spectrum \ of \ Cs_{0.15}FA_{0.85}PbI_{1.80}Br_{1.20} \ precipitate \ powder \ in \ DMSO-d_6.$

 $\label{eq:Fig.S16} \textbf{Fig. S16} \ Liquid-state \ {}^{13}\text{C-NMR} \ spectrum \ of \ Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20} \ precipitate \ powder \ in \ DMSO-d_6.$

Fig. S17 Stability test (environmental condition 25 °C, 55-60% humidity). XPS spectra of I $3d_{3/2}$ and I $3d_{5/2}$ of $Cs_xFA_{1-x}PbI_{1.80}Br_{1.20}$ (x = 0.05, 0.15, 0.25) perovskite thin films in wet.

Fig. S18 Stability test (environmental condition 25 °C, 55-60% humidity). XPS spectra of Pb $4f_{5/2}$ and Pb $4f_{7/2}$ of Cs_xFA_{1-x}PbI_{1.80}Br_{1.20} (x = 0.05, 0.15, 0.25) perovskite thin films in wet.

Fig. S20 XPS spectrum of Cs $3d_{3/2}$ and Cs $3d_{5/2}$ of $Cs_{0.15}FA_{0.85}PbI_{1.80}Br_{1.20}$ perovskite thin film.

Fig. S21 XPS spectrum of Cs $3d_{3/2}$ and Cs $3d_{5/2}$ of $Cs_{0.25}FA_{0.75}PbI_{1.80}Br_{1.20}$ perovskite thin film.

Fig. S22 XPS spectra for different Cs/FA ratio mixed cation thin films.

Fig. S23 Device structure of PSCs with glass/FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au.

Fig. S24 Steady-state PCE and current density of the champion device ($Cs_{0.15}$) measured at maximum-power point of 0.86 V.

Potential / V Fig. S25 J-V curves of the champion device ($Cs_{0.15}$) in reverse and forward scan directions.

Perovskite	A1(%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Lifetime (ns)
$Cs_{0.20}FA_{0.80}PbI_{1.80}Br_{1.20}$	33.44	2.05	10.0	170.74	164.23
$Cs_{0.10}FA_{0.90}PbI_{1.80}Br_{1.20}$	91.34	2.82	10.03	94.06	74.49
FAPbl _{1.80} Br _{1.20}	16.24	12.94	1.19	73.71	30.84

Table S1 TRPL results. The obtained carrier lifetimes of Cs_xFA_{1-x}PbI_{1.80}Br_{1.20} (x = 0, 0.10, 0.20) perovskite films.