Supplementary material

Recovery of valuable metals from mixed spent lithium-ion batteries by

multi-step directional precipitation

Xuan Yang ^b, Yingjie Zhang ^{a,b}, Qi Meng ^{a*}, Peng Dong ^{a*}, Peichao Ning ^b, Qingxiang Li ^c

^{*a*} National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.

^b Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

^c Shenzhen Zhongjin Lingnan Technology Co., Ltd., Shenzhen 518118, China.

*Corresponding author: Qi Meng, E-mail address: mengqi315117@126.com;

*Corresponding author: Peng Dong, E-mail address: dongpeng2001@126.com ;

Fig. S1. Flowchart of mechanical disassembly to obtain mixed spent cathode powders.

Fig. S2. E-pH diagrams of Mn-H₂O system

Fig. S3. Recovery rate of Mn, Ni, Co and Li during Mn precipitation separation process.

Fig. S4. Recovery rate of Ni, Co and Li during Ni precipitation separation process.

Fig. S5. E-pH diagrams of Co-H₂O system

Fig. S6. Recovery rate of Co and Li during Co precipitation separation process.

Fig. S7. Images of XRD pattern of the precipitate product after treating with Na₂CO₃

Table S1. Contents of various elements from spent residues.

Element	Li	Ni	Co	Mn	Fe	Cu	Al
Content (%)	5.22	12.06	25.94	9.25	2.86	1.07	0.85
Table S2. Contents of metals in the leaching solution after impurity removal							
element	Li	Mn	Ni	Co	Al	Fe	Cu
Contents (g/L)	1.861	3.142	4.512	9.333	0.002	0.004	0.002

Table S3. The change of valuable metal content in leachate during the separation process

Metals	Mn	Ni	Со	Li
Contents (g/L)				
Leachate	3.14	4.51	9.33	1.86
After separating Mn	0.02	4.34	9.05	1.83
After separating Ni	< 0.02	0.02	8.96	1.80
After separating Co	< 0.02	< 0.02	0.07	1.76

Table S4. Electrode reaction and standard electrode potential

No.	electrode reactions	Electrode potential
1	$Co^{3+}+e^{-}=Co^{2+}$	+1.83
2	$MnO_2 + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	+1.224
3	$NiO_2 + 4H^+ + 2e^- = Ni^{2+} + 2H_2O$	+1.678
4	$S_2O_8^{2-}+2H^++2e^-=2HSO_4^{-}$	+2.123
5	$Mn^{3+}+e^{-}=Mn^{2+}$	+1.541