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Measurements. 1H, 13C, and 19F NMR spectra were recorded in CDCl3, or DMSO-d6 containing 

tetramethylsilane as internal standard. The spectra recorded on a JEOL JNMECA500 spectrometer at room 

temperature. Molecular weight (Mn and Mw) of the BAF-BS polymers were estimated by gel permeation 

chromatography (GPC) using a Shodex KF-805L or SBSB-803 column with a Jasco 805 UV detector. Chloroform 

with 0.02 M added triethylamine was used as eluent and calibration was done using polystyrene standards. 

Dynamic mechanical analyses (DMA) (Storage modulus (E’ (Pa)), loss modulus (E’’ (Pa)) and tan δ (E’’/E’)) 

were measured on an ITK DVA-225 dynamic viscoelastic analyzer at either 60% relative humidity (RH) 

between room temperature and 95 °C at a heating rate of 1 °C min-1, or as a function of RH at fixed 80 °C 

between 0% and 100% RH. Tensile strength of the membrane samples was determined at fixed 80 °C and 

60% RH while stretching the membrane at a rate of 0.1 mm s-1. Ion exchange capacity (IEC) of the quaternized 

membranes have been determined via Mohr titration method as reported in the literature.1 Water uptake, 

ion conductivity, alkaline stability measurements were all carried out according to the literature.1 For 

transmission electron microscopic (TEM) images, membrane samples (sized 5 mm by 5 mm) were ion 

exchanged to tetrachloroplatinate ions via submerging the samples into 0.5 M potassium 

tetrachloroplatinate (II) aqueous solution at 40 °C for 24 h. The ion exchange is followed by the washing of 

the membranes with deionized ultrapure (18 MΩ) water at 40 °C for 24 h and dried under high-vacuum 

overnight. The obtained dry membranes were embedded into an epoxy resin, cut to 50 nm thickness via a 

Leica microtome Ultracut UCT and placed onto a copper mesh. The images of the samples were taken using 

a Hitachi H-9500 transmission electron microscope.
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Scheme S1 Synthesis of 2,2-bis(4-chlorophenyl)-hexafluoropropane (1).

Fig. S1 1H NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (1) (top) and 2,2-bis(4-

aminophenyl)hexafluoropropane (bottom) in CDCl3.

Fig. S2 13C NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (1) (top) and  2,2-bis(4-

aminophenyl)hexafluoropropane (bottom) in CDCl3.
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Fig. S3 19F NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (1) (top) and 2,2-bis(4-

aminophenyl)hexafluoropropane (bottom) in CDCl3.

Fig. S4 1H NMR spectrum of phenylacetonitrile in CDCl3.
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Fig. S5 1H NMR spectra of 2,2-bis(4-chlorobenzyl)-2-phenyl-ethylamine (3) (top) and 2,2-bis(4-chlorobenzyl)-

2-phenylacetonirtile (2) (bottom) in CDCl3.

Fig. S6 1H NMR spectrum of 4-chlorobenzyl bromide in CDCl3.
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Fig. S7 13C NMR spectra of 2,2-bis(4-chlorobenzyl)-2-phenyl-ethylamine (3) (top) and 2,2-bis(4-chlorobenzyl)-

2-phenylacetonirtile (2) (bottom) in CDCl3.

Fig. S8 19F NMR spectra of QBAF-BS in DMSO-d6 (top) and BAF-BS in CDCl3 (bottom).
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Fig. S9 QBAF-BS2.25 membrane (thickness = 40 ± 7 μm) obtained via casting from DMSO solution at 50 °C 

overnight.

Fig. S10 Structure of BAF-QAF and QBAF-BS copolymers.
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Fig. S11 Water uptake (at 30 and 80 °C) of QBAF-BS membranes as a function of ion exchange capacity.
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Fig. S12 1H NMR spectra of the pristine (black, 0 h) and post-test (red, 150 h) QBAF-BS2.00 membrane.
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Fig. S13 1H NMR spectra of the pristine (black, 0 h) and post-test (red, 300 h) QBAF-BS2.25 membrane.

Fig. S14 1H NMR spectra of QBAF-BS copolymers after the alkaline stability test.
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Fig. S15 19F NMR spectra of QBAF-BS1.50 before (black, 0 h) and after (red, 300 h) the alkaline stability test.
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Fig. S16 19F NMR spectra of QBAF-BS2.00 before (black, 0 h) and after (red, 150 h) the alkaline stability test.
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Fig. S17 19F NMR spectra of QBAF-BS2.25 before (black, 0 h) and after (red, 300 h) the alkaline stability test.
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Fig. S18 FTIR spectra of the pristine (black, 0 h) and post-test (red, 150 h) QBAF-BS2.00 membrane.
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Fig. S19 FTIR spectra of the pristine (black, 0 h) and post-test (red, 300 h) QBAF-BS2.25 membrane.
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