Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Anion exchange membranes containing no β-hydrogen atoms on ammonium groups: synthesis, properties, and alkaline stability

Daniel Koronka^a and Kenji Miyatake^{*bcd}

^aInterdisciplinary Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8510, Japan ^bFuel Cell Nanomaterials Center, University of Yamanashi, 4 Takeda, Kofu 400-8510, Japan ^cClean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8510, Japan

^dDepartment of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan

Measurements. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded in CDCl₃, or DMSO-d₆ containing tetramethylsilane as internal standard. The spectra recorded on a JEOL JNMECA500 spectrometer at room temperature. Molecular weight (M_n and M_w) of the BAF-BS polymers were estimated by gel permeation chromatography (GPC) using a Shodex KF-805L or SBSB-803 column with a Jasco 805 UV detector. Chloroform with 0.02 M added triethylamine was used as eluent and calibration was done using polystyrene standards. Dynamic mechanical analyses (DMA) (Storage modulus (E' (Pa)), loss modulus (E'' (Pa)) and tan δ (E''/E')) were measured on an ITK DVA-225 dynamic viscoelastic analyzer at either 60% relative humidity (RH) between room temperature and 95 °C at a heating rate of 1 °C min⁻¹, or as a function of RH at fixed 80 °C between 0% and 100% RH. Tensile strength of the membrane samples was determined at fixed 80 °C and 60% RH while stretching the membrane at a rate of 0.1 mm s⁻¹. Ion exchange capacity (IEC) of the quaternized membranes have been determined via Mohr titration method as reported in the literature.¹ Water uptake, ion conductivity, alkaline stability measurements were all carried out according to the literature.¹ For transmission electron microscopic (TEM) images, membrane samples (sized 5 mm by 5 mm) were ion exchanged to tetrachloroplatinate ions via submerging the samples into 0.5 M potassium tetrachloroplatinate (II) aqueous solution at 40 °C for 24 h. The ion exchange is followed by the washing of the membranes with deionized ultrapure (18 MΩ) water at 40 °C for 24 h and dried under high-vacuum overnight. The obtained dry membranes were embedded into an epoxy resin, cut to 50 nm thickness via a Leica microtome Ultracut UCT and placed onto a copper mesh. The images of the samples were taken using a Hitachi H-9500 transmission electron microscope.

Scheme S1 Synthesis of 2,2-bis(4-chlorophenyl)-hexafluoropropane (1).

Fig. S1 ¹H NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (**1**) (top) and 2,2-bis(4-aminophenyl)hexafluoropropane (bottom) in CDCl₃.

Fig. S2 ¹³C NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (**1**) (top) and 2,2-bis(4-aminophenyl)hexafluoropropane (bottom) in $CDCl_3$.

Fig. S3 ¹⁹F NMR spectra of 2,2-bis(4-chlorophenyl)hexafluoropropane (1) (top) and 2,2-bis(4-aminophenyl)hexafluoropropane (bottom) in CDCl₃.

Fig. S4 ¹H NMR spectrum of phenylacetonitrile in CDCl₃.

Fig. S5 ¹H NMR spectra of 2,2-bis(4-chlorobenzyl)-2-phenyl-ethylamine (**3**) (top) and 2,2-bis(4-chlorobenzyl)-2-phenylacetonirtile (**2**) (bottom) in CDCl₃.

Fig. S6 ¹H NMR spectrum of 4-chlorobenzyl bromide in CDCl₃.

Fig. S7 ¹³C NMR spectra of 2,2-bis(4-chlorobenzyl)-2-phenyl-ethylamine (**3**) (top) and 2,2-bis(4-chlorobenzyl)-2-phenylacetonirtile (**2**) (bottom) in CDCl₃.

Fig. S8 ¹⁹F NMR spectra of QBAF-BS in DMSO- d_6 (top) and BAF-BS in CDCl₃ (bottom).

Membrane	Membrane	Membrane	Membrane	Membrane
Membrane	Membrane	Membrane	Membrane	Membrane
Membrane	Membrane	Membrane	Membraz e	Med brane
Membrane	Membrane	Membrane	Membrane	Mer brane
Membrane	Mømbrane	Membrane	Membrane	Mei ibrane
Membrane	Membrane	Membrane	Membrane	Me: ıbrane
Membrane	Membrane	Membrane	Membrane	Manbrane
Membrane	Membrane	Membrane	Membrane	Membrane
Membrane	Membrane	Membrane	Membrane	Meinbrane
Membi ane	Membrane	Membrane	Membrane	Mernbrane
Membrane	Membrane	Membrane	Membrane	Meinbrane
Membrane	Membrane	Membrane	Membrane	Membrane
Membrane	Membrane	Membrane	Membrane	Membrane
Membrane	Membrane	Membrane	Membrane	Mernbrane
Memb are	Membrane	Membrane	Membrane	Meinbrane
Membanyanananananananananananananananananan				
Memb	1 2 3	4 5	6 7	8 9
Membijiji	No. 101A 08G	ndualautunho	danlaalaalim	Impurprise

Fig. S9 QBAF-BS2.25 membrane (thickness = 40 \pm 7 μ m) obtained via casting from DMSO solution at 50 °C overnight.

Fig. S10 Structure of BAF-QAF and QBAF-BS copolymers.

Fig. S11 Water uptake (at 30 and 80 °C) of QBAF-BS membranes as a function of ion exchange capacity.

Fig. S12 ¹H NMR spectra of the pristine (black, 0 h) and post-test (red, 150 h) QBAF-BS2.00 membrane.

Fig. S13 ¹H NMR spectra of the pristine (black, 0 h) and post-test (red, 300 h) QBAF-BS2.25 membrane.

Fig. S14 ¹H NMR spectra of QBAF-BS copolymers after the alkaline stability test.

Fig. S15¹⁹F NMR spectra of QBAF-BS1.50 before (black, 0 h) and after (red, 300 h) the alkaline stability test.

Fig. S16¹⁹F NMR spectra of QBAF-BS2.00 before (black, 0 h) and after (red, 150 h) the alkaline stability test.

Fig. S17 ¹⁹F NMR spectra of QBAF-BS2.25 before (black, 0 h) and after (red, 300 h) the alkaline stability test.

Fig. S18 FTIR spectra of the pristine (black, 0 h) and post-test (red, 150 h) QBAF-BS2.00 membrane.

Fig. S19 FTIR spectra of the pristine (black, 0 h) and post-test (red, 300 h) QBAF-BS2.25 membrane.

Reference

1 D. Koronka, A. M. A. Mahmoud and K. Miyatake, J. Polym. Sci., A: Polym. Chem., 2019, 57, 1059-1069.