Supporting Information

Synchronous oxidation and sequestration for As(II) from aqueous

solution by modified CuFe₂O₄ coupled with peroxymonosulfate: A

fast and stable heterogeneous process

Fu Liu, Jian-Feng Wu, Guang-Chao Zhao *

School of Ecology and Environment, Anhui Normal University, Wuhu 241000, P. R. China.

E-mail: gczhao@mail.ahnu.edu.cn

Test S1

The As(**V**) concentration was determined by using the modified molybdate-based method.¹ Briefly, 1 ml of reaction solution was diluted with 2% HCl rather than HNO₃ immediately after withdrawing due to the presence of nitrate leads to color instability, and then mixed with 0.5 ml specified molybdate agent in a 10 ml vials. Of note, samples must be spiked to at least 20 μ M PO₄³⁻. The absorbance of mixed solution was measured at 880 nm with a UV–vispectrophotometer (TU-1901, China) after 20 min.¹

Adsorbents	Reaction conditions	As(III) Adsorption capacity (mg/g)	Ref.
CoFe ₂ O ₄	pH = 3.0, T = 25°C	100	2
MnFe ₂ O ₄	pH = 6.9	27.27	3
CuFe ₂ O ₄	pH = 4.2, T = 35°C	41.2	4
CCF	pH = 7.0, T = 50°C	45	5
$Mn_{0.5}Cu_{0.5}Fe_{1.2}Al_{0.8}O_{4}$	$pH = 6.0, T = 40^{\circ}C$	0.053	6
CuFe ₂ O ₄ /PMS	pH = 7.0, T = 30°C	63.9	7
CuAl ₂ O ₄ /PMS	pH = 7.0, T = 25°C	66.25	8
CuFe ₂ O ₄ -Foam/PMS	pH = 7.0, T = 25°C	105.78	Present work

 Table S1. Comparison of the As(III) adsorption capacity between various Fe-based spinel adsorbents.

Table S2. Kinetics constants for As(III) adsorption by the CuFe₂O₄-Foam/PMS system.

Pseudo-second-order model					
	k 2 (g/mg/min)	q e (mg/g)	R ²		
 Different system 	-	-	-		
CuFe ₂ O ₄ -Foam/PMS	0.0168	18.76	0.9998		
CuFe ₂ O ₄ -Foam alone	0.0032	18.72	0.9925		
CuFe ₂ O ₄ /PMS	0.0148	9.04	0.9989		
② Adsorbent dose	-	-	-		
Half piece	0.0085	18.45	0.9963		
One piece	0.0168	18.76	0.9998		
Two pieces	0.0730	18.62	0.9999		

·			
Three pieces	0.1632	18.55	0.9999
③ Oxidant dose (µM)	-	_	_
50	0.0146	18.65	0.9996
100	0.0168	18.76	0.9998
200	0.0221	18.73	0.9996
400	0.0286	18.69	0.9997
(4) pH	-	-	-
3.0	0.0199	18.73	0.9995
5.0	0.0167	18.73	0.9992
7.0	0.0168	18.76	0.9998
9.0	0.0156	18.76	0.9994
11.0	0.0119	18.18	0.9976
(%) Temperature (%)	-	-	-
10	0.0149	18.73	0.9990
25	0.0168	18.76	0.9996
40	0.0170	18.76	0.9993
50	0.0185	18.73	0.9994
60	0.0203	18.69	0.9995

Fig. S1. The appearacne of Fe-Ni foam and $CuFe_2O_4$ -Foam

Fig. S2. The XRD images of bare $CuFe_2O_4$.

Fig. S3. The fitting curve of As(III) and As(V) removal data by Temkin model.

Fig. S4. XRD images of virgin and used CuFe₂O₄.

Fig. S5. SEM images of virgin and used (without regeneration) CuFe₂O₄.

Fig. S6. Simultaneous removal of As(III) and degradation of MO. Conditions: one piece adsorbent, 400 μM PMS, pH 7.0, 25 °C, 1 mg/L As(III), and 10 μM MO.

Fig. S7. pH_{pzc} of $CuFe_2O_4$ -Foam.

Fig. S8. XPS As 3d spectra of the CuFe₂O₄-Foam with or without PMS.

Fig. S9. Removal efficiency of As(III) in presence of different quenchers, reaction time for (b) :180 min.

Fig. S10. XPS O 1s spectra of virgin CuFe₂O₄-Foam (a), with (b) or without PMS (c).

1 Z. Wang, R.T. Bush, L.A. Sullivan, C. Chen, J. Liu, Selective Oxidation of Arsenite by

Peroxymonosulfate with High Utilization Efficiency of Oxidant, Environ. Sci. Technol., 2014, 48,

3978-3985.

2 S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe₂O₄ and CoFe₂O₄. Chem. Eng. J., **2010**, 158 (3), 599-607.

3 W.H. Xu, L. Wang, J. Wang, G.P. Sheng, X.J. Huang, Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. Crystengcomm, **2013**, 15 (39), 7895.

4 Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Adsorption behavior of As(III) onto a copper ferrite generated from printed circuit board industry. Chem. Eng. J., **2013**, 225, 433-439.

5 L.-K. Wu, H. Wu, H.-B. Zhang, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, Graphene oxide/CuFe₂O₄ foam as an efficient absorbent for arsenic removal from water. Chem. Eng. J., **2018**, 334, 1808-1819.

6 M.A. Malana, R.B. Qureshi, M.N. Ashiq, Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism. Chem. Eng. J., **2011**, 172 (2), 721-727.

7 Y. Wei, H. Liu, C. Liu, S. Luo, Y. Liu, X. Yu, J. Ma, K. Yin, H. Feng, Fast and efficient removal of As(III) from water by $CuFe_2O_4$ with peroxymonosulfate: Effects of oxidation and adsorption. Water Res., **2019**, 150, 182-190.

8 F. liu,W.M. Yang, W.W. Li, G.-C., Zhao. Simultaneous Oxidation and Sequestration of Arsenic(III) from Aqueous Solution by Copper Aluminate with Peroxymonosulfate: A Fast and Efficient

Heterogeneous Process, ACS Omega, 2021.