Applying Molecular Networking for Targeted Isolation of Depsipeptides

Xiao Lin ^{abc†}, Ling Chai ^{d†}, Hong Rui Zhu ^e, Yongjun Zhou ^e, Yaoyao Shen ^e, Kai Hao Chen^e, Fan Sun ^e, Bu Ming Liu ^d, Shi Hai Xu ^{*b}, Hou Wen Lin ^{*e}

Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China

College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China

College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China

Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and

Pharmaceutical Sciences, Nanning, 530022, P. R. China

Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China

† These authors contributed equally to this work.

Corresponding Author

*E-mail: txush@jnu.edu.cn (S. H. Xu) *E-mail: franklin67@126.com (H. W. Lin).

Supporting Information List

Table S1. HRESIMS data of the compounds 1-10	4
Table S2. NMR (600 MHz, DMSO- <i>d</i> ₆) data for Neoantimycin L (1)	5
Table S3. NMR (600 MHz, DMSO- <i>d</i> ₆) data for Unantimycin B1 (2)	6
Table S4. NMR (600 MHz, DMSO- <i>d</i> ₆) data for Unantimycin B2 (3)	7
Table S5. NMR (600 MHz, DMSO-d ₆) data for Unantimycin D1 (4)	8
Table S6. NMR (600 MHz, DMSO-d ₆) data for Unantimycin D2 (5)	9
Table S7a. NMR (600 MHz, DMSO-d ₆) data for NAT-G (6)	10
Table S7b. NMR (600 MHz, DMSO- <i>d</i> ₆) data for NAT-G (6)	12
Table S8. NMR (600 MHz, DMSO-d ₆) data for Unantimycin C1 (7)	14
Table S9. NMR (600 MHz, DMSO-d ₆) data for Unantimycin C2 (8)	16
Table S10. ¹ H NMR (600 MHz CDCl ₃) Data for the MTPA Esters of Bhdo	18
Figure S1 MS/MS spectrum of NAT-H (A), NAT-L (B), UAT-B1&B2 (C), and	I UAT-
D1&D2 (D)	20
Figure S2a ¹ H NMR spectrum of 1 in DMSO- <i>d</i> ₆	21
Figure S2b ¹³ C NMR spectrum of 1 in DMSO- <i>d</i> ₆	22
Figure S2c HSQC spectrum of 1 in DMSO- <i>d</i> ₆	23
Figure S2d HMBC spectrum of 1 in DMSO- <i>d</i> ₆	24
Figure S2e ¹ H- ¹ H COSY spectrum of 1 in DMSO- <i>d</i> ₆	25
Figure S2f ROESY spectrum of 1 in DMSO- <i>d</i> ₆	26
Figure S3a ¹ H NMR spectrum of 2 in DMSO- <i>d</i> ₆	27
Figure S3b ¹³ C NMR spectrum of 2 in DMSO- <i>d</i> ₆	28
Figure S3c HSQC spectrum of 2 in DMSO- <i>d</i> ₆	29
Figure S3d HMBC spectrum of 2 in DMSO- <i>d</i> ₆	30
Figure S3e ¹ H- ¹ H COSY spectrum of 2 in DMSO- <i>d</i> ₆	31
Figure S3f ROESY spectrum of 2 in DMSO- <i>d</i> ₆	32
Figure S4a ¹ H NMR spectrum of 3 in DMSO- <i>d</i> ₆	33
Figure S4b ¹³ C NMR spectrum of 3 in DMSO- <i>d</i> ₆	34
Figure S4c HSQC spectrum of 3 in DMSO- <i>d</i> ₆	35
Figure S4d HMBC spectrum of 3 in DMSO- <i>d</i> ₆	36
Figure S4e ¹ H- ¹ H COSY spectrum of 3 in DMSO- <i>d</i> ₆	37
Figure S4f ROESY spectrum of 3 in DMSO- <i>d</i> ₆	38
Figure S5a ¹ H NMR spectrum of 4 in DMSO- <i>d</i> ₆	39
Figure S5b ¹³ C NMR spectrum of 4 in DMSO- <i>d</i> ₆	40
Figure S5c HSQC spectrum of 4 in DMSO- <i>d</i> ₆	41
Figure S5d HMBC spectrum of 4 in DMSO- <i>d</i> ₆	42
Figure S5e 1 H- 1 H COSY spectrum of 4 in DMSO- d_{6}	43
Figure S5f ROESY spectrum of 4 in DMSO- d_6	44
Figure S6a ¹ H NMR spectrum of 5 in DMSO- <i>d</i> ₆	45
Figure S6b ¹³ C NMR spectrum of 5 in DMSO- <i>d</i> ₆	46
Figure S6c HSQC spectrum of 5 in DMSO- <i>d</i> ₆	47
Figure S6d HMBC spectrum of 5 in DMSO- <i>d</i> ₆	48

Figure S6e ¹ H- ¹ H COSY spectrum of 5 in DMSO- <i>d</i> ₆	49
Figure S6f ROESY spectrum of 5 in DMSO- d_6	50
Figure S7a ¹ H NMR spectrum of 6 in DMSO- <i>d</i> ₆	51
Figure S7b ¹³ C NMR spectrum of 6 in DMSO- <i>d</i>	52
Figure S7c HSQC spectrum of 6 in DMSO- <i>d</i> ₆	53
Figure S7d HMBC spectrum of 6 in DMSO- <i>d</i> ₆	54
Figure S7e ¹ H- ¹ H COSY spectrum of 6 in DMSO- <i>d</i> ₆	55
Figure S7f ROESY spectrum of 6 in DMSO- <i>d</i> ₆	56
Figure S7g HETLOC spectrum of 6 in DMSO- <i>d</i> ₆	57
Figure S8a ¹ H NMR spectrum of 7 in DMSO- <i>d</i> ₆	58
Figure S8b ¹³ C NMR spectrum of 7 in DMSO- <i>d</i> ₆	59
Figure S8c HSQC spectrum of 7 in DMSO- <i>d</i> ₆	60
Figure S8d HMBC spectrum of 7 in DMSO- <i>d</i> ₆	61
Figure S8e ¹ H- ¹ H COSY spectrum of 7 in DMSO- <i>d</i> ₆	62
Figure S8f ROESY spectrum of 7 in DMSO- <i>d</i> ₆	63
Figure S8g HETLOC spectrum of 7 in DMSO- <i>d</i> ₆	64
Figure S9a ¹ H NMR spectrum of 8 in DMSO- <i>d</i> ₆	65
Figure S9b ¹³ C NMR spectrum of 8 in DMSO- <i>d</i> ₆	66
Figure S9c HSQC spectrum of 8 in DMSO- <i>d</i> ₆	67
Figure S9d HMBC spectrum of 8 in DMSO- <i>d</i> ₆	68
Figure S9e ¹ H- ¹ H COSY spectrum of 8 in DMSO- <i>d</i> ₆	69
Figure S9f ROESY spectrum of 8 in DMSO- <i>d</i> ₆	70
Figure S9g HETLOC spectrum of 8 in DMSO- <i>d</i> ₆	71
Figure S10 ¹ H NMR spectrum of 9 in DMSO- <i>d</i> ₆	72
Figure S11 ¹ H NMR spectrum of 10 in DMSO- <i>d</i> ₆	73
Figure S12 Relative Stereochemical Analysis of NATs	74
Figure S13 LC-MS chromatogram of extracted ion at 333 [M - H] ⁻ and 347 [J	M - H]-
from Mosher's esterification reaction of 6-10	75
Figure S14 LC-MS chromatogram of extracted ion at 437 [M + H]+from M	osher's
esterification reaction of 6-10	76
Figure S15 LC-MS chromatogram of extracted ion at 412 [M - H] ⁻ from FDL	A 6-10
	77

Compounds	formula	det. <i>m/z</i>	calc. <i>m/z</i>	∆ Error (ppm)
Neoantimycin L (1)	$H^{+}C_{37}H_{46}N_{2}O_{12}$	711.3106	711.3129	3.23
Unantimycin B1 (2)	$H^+C_{35}H_{43}NO_{11}$	654.2924	654.2914	1.53
Unantimycin B2 (3)	$H^+C_{35}H_{43}NO_{11}$	654.2925	654.2914	1.68
Unantimycin D1 (4)	$H^+C_{34}H_{41}NO_{11}$	640.2747	640.2758	1.72
Unantimycin D2 (5)	$H^+C_{34}H_{41}NO_{11}$	640.2743	640.2758	2.34
Neoantimycin G (6)	$H^{+}C_{37}H_{48}N_{2}O_{12}$	713.3262	713.3286	3.36
Unantimycin C1 (7)	$H^+C_{35}H_{45}NO_{11}$	656.3067	656.3071	0.63
Unantimycin C2 (8)	$H^+C_{35}H_{45}NO_{11}$	656.3069	656.3071	0.24
Unantimycin E1 (9)	$H^+C_{34}H_{43}NO_{11}$	642.2906	642.2914	1.25
Unantimycin E2 (10)	$H^+C_{34}H_{43}NO_{11}$	642.2905	642.2914	1.40

Table S1. HRESIMS data of the compounds 1-10

	$\delta_{\rm C}$	δ_{H}	HMBC	COSY	ROESY
1	202.6				
2	76.7	5.67, dd (7.6, 5.6)	1, 3, 12, 13	12a, 12b	14/18, 33
3	167.0				
4	75.4	5.10, d (5.2)	3, 5, 19, 20, 21	19	20, 21
5	168.0				
6	55.4	5.04, br s			29
7	70.8	5.59, m	5, 8	6, 29	
8	167.7				
9	75.6	4.83, d (7.6)	8, 10, 30, 31, 32	30	31, 32
10	170.9				
11	54.1				
12	37.1	3.16, dd (14.2, 5.6) 3.07, dd (14.2, 7.7)	1, 2, 13, 14/18	2	14/18
13	135.4				
14/18	129.6	7.20, overlapped	12, 16	15/17	2, 12, 34
15/17	128.3	7.30, t (7.5)	13	14/18, 16	
16	126.9	7.25, overlapped		15/17	
19	36.4	1.79, m	3, 4, 20, 21	4, 20, 21	
20	14.2	0.77, overlapped	4, 19, 21	19	4
21	23.7	1.03, m	19, 20	19, 35	4
22	169.6				
23	114.8				
24	n.o. ^a				
25	128.3				
26	n.o. ^a	8.14, m	28	27	
27	n.o. ^a	6.57, br s		26, 28	
28	123.6	7.69, br s		27	
29	15.7	1.23, d (6.6)	6, 7	7	6, 36
30	35.7	1.88, m		9, 31, 32	
31	14.1	0.86, d (7.8)	9, 30, 32	30	
27	24.0	1.43, m		20.26	
52	24.0	1.14, m	9, 30	50, 50	
33	21.3	1.34, s	1, 10, 11, 34		2
34	21.2	1.21, s	1, 10, 11, 33		
35	11.1	0.77 overlapped	19, 21	21	
36	10.5	0.84, t (7.6)	30, 32	32	29
25-NH		9.70 br s		СНО	
CHO	159.8	8.31, d (2.0)		25-NH	

Table S2. NMR (600 MHz, DMSO-d₆) data for Neoantimycin L (1)

^a Carbon resonances are not observed due to signal broadening

	$\delta_{\rm C}$	δ_{H}	HMBC	COSY	ROESY
1	202.4				
2	76.4	5.40, dd (10.0, 2.6)	3, 12, 13	12a, 12b	14/18, 33
3	168.09				
4	75.5	5.02, d (3.0)	3, 5, 19, 20, 21	19	20, 21
5	168.5				
6	55.4	5.16, dd (9.2, 2.9)	5, 7, 22	7, 6-NH	29
7	70.3	5.67, qd (6.4, 3.0)	5, 8, 29	6, 29	6-NH
8	167.7				
9	75.5	5.21, d (8.2)	8, 10, 30, 31, 32	30	31, 32
10	170.8				
11	55.0				
12	36.6	3.16, m 2.92, m	1, 2, 13, 14/18	2	33, 14/18 14/18
13	136.2				
14/18	129.2	7.28, overlapped	12, 16	15/17	2, 12
15/17	128.5	7.33, overlapped	13	14/18, 16	
16	126.9	7.25, m	14/18	15/17	
19	29.7	2.24, m	3, 4, 20, 21	4, 20, 21	
20	16.1	0.79, d (6.9)	4, 19, 21	19	
21	18.3	0.91, d (6.9)	4, 19, 20	19	
22	167.9				
23	135.2				
24	114.8	7.28, overlapped	26, 28		
25	157.2				
26	118.5	6.94, dd (8.1, 2.4)	24, 28	27	
27	129.2	7.28, overlapped	23, 25	26, 28	
28	118.5	7.35, overlapped	22, 24, 26	27	
29	16.1	1.21, d (6.5)	6, 7	7	35
30	36.7	1.81, m	8, 9, 31, 32	31, 32	
31	13.8	0.87, d (6.8)	9, 30, 32	30	
37	24.0	1.45, m	9, 30, 31	30	
52	2 7 .0	1.06, m			
33	21.3	1.41, s	1, 10, 11, 34		2, 12a
34	20.7	1.32, s	1, 10, 11, 33		
35	10.6	0.87, t (6.8)	30, 32		
6-NH		8.72, d (9.2)	5, 7, 22	6	
25-ОН		9.66, s			

 Table S3. NMR (600 MHz, DMSO-d₆) data for Unantimycin B1 (2)

	$\delta_{\rm C}$	δ_{H}	HMBC	COSY	ROESY
1	202.6				
2	76.4	5.68, dd (7.7, 5.6)	1, 3, 12, 13	12	14/18, 33
3	167.2				
4	75.9	5.05, d (5.4)	3, 19, 20, 21	19	20, 21
5	168.2				
6	55.9	4.95, dd (8.4, 3.1)	5	7, 6-NH	29
7	70.6	5.55, m	5, 8	6, 29	
8	167.7				
9	75.6	4.86, d (7.7)	10, 30, 31, 32	30	31, 32
10	171.0				,
11	54.2				
12	37.1	3.16, dd (14.1, 7.8) 3.06, dd (14.1, 7.8)	1, 2, 13, 14/18	2	33, 34 34
13	135.4				
14/18	129.6	7.20, overlapped	12, 16	15/17	2, 12
15/17	128.4	7.28, overlapped	13	14/18, 16	
16	127.0	7.25, m	14/18	15/17	
19	30.0	2.01, m	3, 4, 20, 21	4, 20, 21	
20	16.8	0.69, d (6.8)	4, 19, 21	19	4
21	17.9	0.83, overlapped	4, 19, 20	19	4
22	167.8				
23	135.0				
24	114.7	7.28, overlapped	26, 28		
25	157.2				
26	118.5	6.95, dd (7.6, 1.8)	24, 28	27	
27	129.2	7.28, overlapped	23, 25	26, 28	
28	118.5	7.34, br d (7.8)	22, 24, 26	27	
29	15.6	1.23, d (6.3)	6, 7	7	6, 31
30	35.7	1.88, qd (7.6, 3.6)		9, 31	
31	14.0	0.86, d (6.9)	9, 30, 32	30	
32	24.0	1.43, m 1.13, m	9, 30, 31, 35	30, 35	
33	21.1	1.34, s	1, 10, 11, 34		
34	21.3	1.20, s	1, 10, 11, 33		
35	10.4	0.83, overlapped	32, 30	32	
6-NH		8.67, d (8.3)	22	6	
25-ОН		9.68. s			

 Table S4. NMR (600 MHz, DMSO-d₆) data for Unantimycin B2 (3)

	δ_{C}	$\delta_{\rm H}$	HMBC	COSY	ROESY
1	202.5				
2	76.4	5.37, dd (10.0, 2.6)	1, 3, 12, 13	12a, 12b	14/18, 33
3	168.1			-	~
4	75.5	5.01, d (2.9)	3, 5, 19, 20, 21	19	20, 21
5	168.6				
6	55.4	5.15, overlapped	5, 7, 22, 29	7, 6-NH	29
7	70.2	5.66, qd (6.4, 4.0)	5, 8, 29	6, 29	6-NH
8	167.7				
9	76.8	5.15, overlapped	8, 10, 30, 31, 32	30	31, 32
10	170.9				
11	55.2				
12	36.6	3.15, dd (14.9, 2.7) 2.91, dd (14.9, 2.7)	1, 2, 13, 14/18	2	33, 14/18 14/18
13	136.3				
14/18	129.3	7.28, overlapped	12, 16	15/17	2, 12
15/17	128.6	7.34, overlapped	13	14/18, 16	
16	127.0	7.25, m	14/18	15/17	
19	29.7	2.25, m	3, 4, 20, 21	4, 20, 21	
20	16.1	0.80, d (6.9)	4, 19, 21	19	
21	18.3 ^a	0.92, d (6.9)	4, 19, 20	19	
22	168.0				
23	135.2				
24	114.8	7.28, overlapped	25, 26, 28		
25	157.2				
26	118.5	6.94, ddd (8.0, 2.5, 1.1)	24, 25, 28	27	
27	129.3	7.28, overlapped	23, 25	26, 28	
28	118.5	7.35, overlapped	22, 24, 26	27	
29	16.2	1.21, d (6.4)	6, 7	7	
30	30.7	1.99, m	8, 9, 31, 32	9, 31, 32	
31	17.6 ^a	0.88, d (8.4)	9, 30, 32	30	
32	18.0 ^a	0.90, d (8.4)	9, 30, 31	30	
33	21.3	1.43, s	1, 10, 11, 34		2, 12a
34	20.6	1.33, s	1, 10, 11, 33		
6-NH		8.70, d (9.2)	5, 7, 22	6	
25-ОН		9.70, s			

Table S5. NMR (600 MHz, DMSO-d₆) data for Unantimycin D1 (4)

^a values are interchangeable

	$\delta_{\rm C}$	$\delta_{\rm H}$	HMBC	COSY	ROESY
1	202.6				
2	76.4	5.69, dd (7.8, 5.6)	1, 3, 12, 13	12a, 12b	14/18, 33
3	167.2				
4	76.0	5.05, d (5.3)	3, 5, 19, 20, 21	19	20, 21
5	168.3				
6	55.9	4.94, dd (8.3, 3.1)	5, 7, 22	7, 6-NH	29
7	70.6	5.54, qd (6.4, 3.0)	5, 8	6, 29	6-NH
8	167.8				
9	76.7	4.80, d (7.2)	8, 10, 30, 31, 32	30	31, 32
10	171.0				
11	54.2				
10	27.2	3.15, dd (14.1, 5.6)	1 2 12 14/19	C	14/18
12	57.2	3.06, dd (14.0, 7.8)	1, 2, 13, 14/10	Z	14/18
13	135.4				
14/18	129.6	7.20, m	12, 16	15/17	2, 12
15/17	128.4	7.28, overlapped	13	14/18, 16	
16	127.0	7.25, m	14/18	15/17	
19	30.0	2.03, overlapped	3, 4, 20, 21	4, 20, 21	
20	16.8	0.69, d (6.8)	4, 19, 21	19	
21	17.6 ^a	0.82, d (6.9)	4, 19, 20	19	
22	167.6				
23	135.0				
24	114.8	7.28, overlapped	26, 28		
25	157.3				
26	118.6	6.95, ddd (8.0, 2.6,	24, 28	27	
		1.1)			
27	129.3	7.28, overlapped	23, 25	26, 28	
28	118.5	7.34, m	22, 24, 26	27	
29	15.7	1.23, d (6.5)	6, 7	7	
30	29.8	2.03, overlapped	8, 9, 31, 32	9, 31, 32	
31	17.7ª	0.88, dd (6.8, 2.6)	9, 30, 32	30	
32	17.9ª	0.88, dd (6.8, 2.6)	9, 30, 31	30	
33	21.3	1.34, s	1, 10, 11, 34		2
34	21.2	1.21, s	1, 10, 11, 33		12
6-NH		8.65, d (8.3)	5, 7, 22	6	
25-OH		9.76, br s			

 Table S6. NMR (600 MHz, DMSO-d₆) data for Unantimycin D2 (5)

	δ_{C}	δ_{H}	HMBC	COSY	ROESY
1	77.8	3.29, d (10.5)	10, 11, 12, 33	1 - OH	2, 12b,
					33, 34
2	71.6	5.45, dd (10.2, 4.6)	1, 3, 12, 13	12	12b,
					14/18, 34
3	167.6				
4	75.7	5.34, d (3.7)	3, 5, 19, 20, 21	19	20, 21
5	167.6				
6	55.3	5.14, dd (8.7, 3.3)		7	29
7	70.7	5.56, m	5, 22	6, 29	
8	168.1				
9	74.6	4.57, d (8.3)	8, 10, 30, 31, 32	30	31, 32
10	174.8				
11	45.4				
12	39.2	3.04, dd (14.2, 10.2) 2.97, dd (14.2, 4.6)	1, 2, 13, 14/18	2	14/18 1, 14/18
13	137.5	· · /			
14/18	129.0	7.22, overlapped	12, 16	15/17	2, 12
15/17	128.3	7.28, m	13	14/18, 16	
16	126.4	7.20, overlapped	14/18	15/17	
19	36.6	1.50, m	3, 4, 20, 21	4, 20, 21	
20	14.4	0.60, overlapped	4, 19, 21	19	
21	22.9	0.8, m	19, 20	19, 35	
22	170.0				
23	114.7				
24	n.o.ª				
25	127.4				
26	n.o.ª	8.19, d (7.8)	24, 28	27	
27	n.o.ª	6.81, br s		26, 28	
28	123.6	7.87, d (7.2)		27	
29	15.6	1.21, d (6.4)	6, 7	7	6, 36
30	35.4	1.85, m		9, 31, 32	
31	14.0	0.87, d (7.1)	9, 30, 32	30	
32	24.2	1.50, m		20.26	
	24.5	1.17, m	9, 31	30, 30	
33	26.2	1.31, s	1, 10, 11, 34		1 - OH
34	22.0	1.25, s	1, 10, 11, 33		1, 2
35	11.1	0.60 overlapped	19, 21	21	
36	10.3	0.84, d (7.6)	30, 32	32	29
CHO	159.8	8.32, d (1.7)		25-NH	
1 - OH		4.39, d (10.4)		1	

Table S7a. NMR (600 MHz, DMSO-d₆) data for NAT-G (6)

	δ_{C}	δ_{H}	HMBC	COSY	ROESY
24-OH		12.7, s			
25-NH		9.78 br s		CHO	

^a Carbon resonances are not observed due to signal broadening

	Experimental	Literature ^a	Experimental	Literature ^a
	$\delta_{\rm C} (125~{ m MHz})$	$\delta_{\rm C}$ (100 MHz)	$\delta_{ m H}(600~{ m MHz})$	$\delta_{ m H}(400~{ m MHz})$
1	77.8	77.9	3.29, d (10.5)	3.28, d (10.4)
2	71.6	71.6	5.45, dd (10.2, 4.6)	5.44, dd (10.2, 4.5)
3	167.6	167.6		
4	75.7	75.8	5.34, d (3.7)	5.33, d (3.6)
5	167.6	167.5		
6	55.3	55.3	5.14, dd (8.7, 3.3)	5.15, dd (8.7, 3.1)
7	70.7	70.6	5.56, m	5.55, qd (6.5, 3.1)
8	168.1	168.1		
9	74.6	74.6	4.57, d (8.3)	4.56, d (8.3)
10	174.8	174.8		
11	45.4	45.4		
			3.04, dd (14.2, 10.2)	3.03, dd (14.2,
12	39.2	39.2		10.2)
			2.97, dd (14.2, 4.6)	2.95, dd (14.2, 4.5)
13	137.5	137.6		
14/18	129.0	129.0	7.22, overlapped	7.22, d (7.5)
15/17	128.3	128.3	7.28, m	7.27, dd (7.3, 7.5)
16	126.4	126.4	7.20, overlapped	7.19, t (7.3)
19	36.6	36.6	1.50, m	1.50, m
20	14.4	14.3	0.60, overlapped	0.58, d (6.8)
21	22.9	22.9	0.8, m	0.80, m
22	170.0	170.2		
23	114.7	114.5		
24	n.o. ^b	150.7		
25	127.4	127.1		
26	n.o. ^b	125.0	8.19, d (7.8)	8.20, d (7.7)
27	n.o. ^b	n.o. ^b	6.81, br s	6.90, br s
28	123.6	123.6	7.87, d (7.2)	7.92, br s
29	15.6	15.5	1.21, d (6.4)	1.20, d (6.5)
30	35.4	35.4	1.85, m	1.84, dqd (8.3, 7.0,
				3.6)
31	14.0	14.0	0.87, d (7.1)	0.86, d (7.0)
32	24.3	24.3	1.50, m	1.49, m
	2 -T .J		1.17, m	1.17, m
33	26.2	26.2	1.31, s	1.30, s
34	22.0	22.0	1.25, s	1.25, s
35	11.1	11.1	0.60 overlapped	0.59, t (6.8)
36	10.3	10.2	0.84, d (7.6)	0.84, dd (7.5, 7.5)
CHO	159.8	160.4	8.32, d (1.7)	8.31, d (1.8)

Table S7b. NMR (600 MHz, DMSO-d₆) data for NAT-G (6)

1-ОН	4.39, d (10.4)	4.39, d (10.4)
24-	12.7 s	12.8 br.s
OH	12.7, 5	12.0, 01 5
25-	9.78 br s	981 brs
NH	9.78 01 5	9.01, 01 5

^a Salim, A. A. et al. Org. Lett. **2014**, 16 (19), 5036–5039.

	$\delta_{\rm C}$	δ_{H}	HMBC	COSY	ROESY
1	75.8	3.48, overlapped	10, 11, 12, 33,	1 - OH	33, 34
			34		
2	76.7	5.42, t (7.0)	3, 12, 13	12a, 12b	14/18, 33,
					34
3	168.4 ^a				
4	76.9	5.17, d (4.6)	3, 5, 19, 20, 21	19	20, 21
5	168.5 ª				
6	55.9	5.15, dd (9.0, 3.1)	5, 7, 22	7, 6-NH	29
7	70.7	5.80, qd (6.4, 2.9)	8	6, 29	6-NH
8	170.4				
9	74.9	5.01, d (7.9)	8, 10, 30, 31,	30	31, 32
			32		
10	174.2				
11	45.4				
12	373	3.04, dd (13.6, 5.7)	1 2 13 14/18	2	33 14/18
1 -	51.5	2.90, dd (13.7, 8.3)	·, - , 10, 1 // 10	-	22, 11/10
13	137.4				
14/18	129.3	7.29, overlapped	12, 16	15/17	2, 12
15/17	128.4	7.29, overlapped	13	14/18, 16	
16	126.4	7.20, overlapped	14/18	15/17	
19	31.5	1.99, overlapped		4, 20, 21	
20	17.0	0.67, d (7.0)	4, 19, 21	19	
21	18.2	0.67, d (7.0)	4, 19, 20	19	
22	167.6				
23	135.1				
24	114.7	7.29, overlapped	22, 26, 28		
25	157.3				
26	118.4 ^a	6.96, dd (8.1, 2.4)	24, 28	27	
27	128.0	7.29, overlapped	23, 25	26, 28	
28	118.6 ^a	7.36, d (7.7)	22, 24, 26	27	
29	15.9	1.28, d (6.4)	6, 7	7	35, 6-NH
30	35.8	1.93, overlapped	31, 32, 35	31, 32	
31	14.7	0.92, d (6.9)	9, 30, 32	30	
37	2/1 1	1.49, m	30 31 35	35	
52	∠4 .1	1.19, m	50, 51, 55	30, 35	
33	23.7	1.10, s	1, 10, 11, 34		2
34	22.6	1.32, s	1, 10, 11, 33		2, 12
35	10.9	0.88, t (7.3)	30, 32	32	
1-OH		4.85, br d (10.3)	1	1	
6-NH		8.77, d (8.9)	22	6	28, 29

 Table S8. NMR (600 MHz, DMSO-d₆) data for Unantimycin C1 (7)

^a values are interchangeable

	$\delta_{\rm C}$	$\delta_{ m H}$	HMBC	COSY	ROESY
1	77.9	3.29, d (10.6)	10, 11, 12,	1-OH	12b, 34
			33, 34		
2	71.8	5.38, dd (10.4, 4.4)	3, 12	12	14/18,
					34
3	168.1				
4	75.4	5.29, d (3.4)	3, 5, 19, 20,	19	20, 21
			21		
5	167.8				
6	55.5	5.05, dd (9.1, 3.4)	5, 7, 22	7, 6-NH	29
7	71.0	5.50, qd (6.4, 3.4)	8	6, 29	
8	168.1				
9	74.4	4.57, d (8.6)	8, 10, 30, 31,	30	31, 32
			32		
10	174.9				
11	45.3				
12	39.2	3.04, dd (14.0, 10.4)	1, 2, 13,	2	33,
		2.95, dd (14.0, 4.4)	14/18	2	14/18
13	137.6				
14/18	129.1	7.23, overlapped	12, 16	15/17	2, 12
15/17	128.3	7.28, overlapped	13	14/18, 16	
16	126.4	7.20, overlapped	14/18	15/17	
19	30.3	1.70, m		20, 21	
20	15.9	0.30, d (6.9)	4, 19, 21	19	
21	18.4	0.67, d (6.9)	4, 19, 20	19	
22	167.8				
23	135.2				
24	114.8	7.28, overlapped	22, 26, 28		
25	157.2				
26	118.5	6.94, ddd (8.0, 2.5, 1.0)	24, 25, 28	27	
27	129.2	7.28, overlapped	25	26, 28	
28	118.5	7.34, br d (7.7)	22, 24, 26	27	
29	15.4	1.20, d (6.4)	6, 7	7	35, 6-
					NH
30	35.4	1.84, m	9, 31	9, 31, 32	
31	13.9	0.86, d (6.9)	9, 30, 32	30	
22	24.2	1.49, m	21	20.25	
32	24.2	1.16, m	31	30, 35	
33	26.3	1.30, s	1, 10, 11, 34		1, 1 - OH
34	21.9	1.26, s	1, 10, 11, 33		1, 2
35	10.2	0.83, t (7.5)	30, 32	32	29, 32

Table S9. NMR (600 MHz, DMSO-*d*₆) data for Unantimycin C2 (8)

	δ_{C}	δ_{H}	HMBC	COSY	ROESY
1-OH		4.38, d (10.5)	1	1	33
6-NH		8.65, d (9.1)	5, 22	6	28, 29
25-ОН		9.67 br, s			

	<i>S</i> -MTPA ester $\delta_{\rm H}$	<i>R</i> -MTPA ester $\delta_{\rm H}$	$\Delta \delta (\delta_S - \delta_R)$ values
	(multiplicity, $J = Hz$)	(multiplicity, $J = Hz$)	
2-Me	1.34, s	1.33, s	+0.01
	1.12, s	1.06, s	+0.06
3	5.47, d (3.8)	5.51, d (3.7)	-0.04
4	4.83, dt (9.4, 3.8)	4.89, dt (9.4, 3.8)	-0.06
5	2.78, dd (14.7, 9.4)	2.82, dd (14.7, 9.4)	-0.04
	2.69, dd (14.9, 4.0)	2.76, dd (14.7, 3.8)	-0.07
7/11	7.13, d (6.8)	7.18, d (7.4)	-0.05
8/10	7.48, m	7.48, m	
9	7.53, m	7.53, m	

 Table S10. ¹H NMR (600 MHz CDCl₃) Data for the MTPA Esters of Bhdo

Figure S1 MS/MS spectrum of NAT-H (A), NAT-L (B), UAT-B1&B2 (C), and

UAT-D1&D2 (D)

Figure S2a ¹H NMR spectrum of 1 in DMSO-*d*₆

Figure S2b ¹³C NMR spectrum of 1 in DMSO-*d*₆

Figure S2c HSQC spectrum of 1 in DMSO-d₆

Figure S2d HMBC spectrum of 1 in DMSO-d₆

Figure S2e ¹H-¹H COSY spectrum of 1 in DMSO-*d*₆

Figure S2f ROESY spectrum of 1 in DMSO-d₆

Figure S3a ¹H NMR spectrum of 2 in DMSO-*d*₆

Figure S3b ¹³C NMR spectrum of 2 in DMSO-*d*₆

Figure S3c HSQC spectrum of 2 in DMSO-d₆

Figure S3d HMBC spectrum of 2 in DMSO-d₆

Figure S3e ¹H-¹H COSY spectrum of 2 in DMSO-*d*₆

Figure S3f ROESY spectrum of 2 in DMSO-d₆

Figure S4a ¹H NMR spectrum of 3 in DMSO-d₆

Figure S4b ¹³C NMR spectrum of 3 in DMSO-*d*₆

Figure S4c HSQC spectrum of 3 in DMSO-d₆

Figure S4d HMBC spectrum of 3 in DMSO-d₆

Figure S4e ¹H-¹H COSY spectrum of 3 in DMSO-*d*₆

Figure S4f ROESY spectrum of 3 in DMSO-d₆

Figure S5a ¹H NMR spectrum of 4 in DMSO-*d*₆

Figure S5b ¹³C NMR spectrum of 4 in DMSO-*d*₆

Figure S5c HSQC spectrum of 4 in DMSO-*d*₆

Figure S5d HMBC spectrum of 4 in DMSO-*d*₆

Figure S5e ¹H-¹H COSY spectrum of 4 in DMSO-*d*₆

Figure S5f ROESY spectrum of 4 in DMSO-d₆

Figure S6a ¹H NMR spectrum of 5 in DMSO-*d*₆

Figure S6b ¹³C NMR spectrum of 5 in DMSO-*d*₆

Figure S6c HSQC spectrum of 5 in DMSO-*d*₆

Figure S6d HMBC spectrum of 5 in DMSO-d₆

Figure S6e ¹H-¹H COSY spectrum of 5 in DMSO-*d*₆

Figure S6f ROESY spectrum of 5 in DMSO-d₆

Figure S7a ¹H NMR spectrum of 6 in DMSO-d₆

Figure S7b ¹³C NMR spectrum of 6 in DMSO-d

Figure S7c HSQC spectrum of 6 in DMSO-d₆

Figure S7d HMBC spectrum of 6 in DMSO-d₆

Figure S7e ¹H-¹H COSY spectrum of 6 in DMSO-*d*₆

Figure S7f ROESY spectrum of 6 in DMSO-d₆

Figure S7g HETLOC spectrum of 6 in DMSO-d₆

Figure S8a ¹H NMR spectrum of 7 in DMSO-d₆

Figure S8b ¹³C NMR spectrum of 7 in DMSO-*d*₆

Figure S8c HSQC spectrum of 7 in DMSO-d₆

Figure S8d HMBC spectrum of 7 in DMSO-d₆

Figure S8e ¹H-¹H COSY spectrum of 7 in DMSO-*d*₆

Figure S8f ROESY spectrum of 7 in DMSO-d₆

Figure S8g HETLOC spectrum of 7 in DMSO-d₆

Figure S9a ¹H NMR spectrum of 8 in DMSO-*d*₆

Figure S9b ¹³C NMR spectrum of 8 in DMSO-*d*₆

Figure S9c HSQC spectrum of 8 in DMSO-d₆

Figure S9d HMBC spectrum of 8 in DMSO-d₆

Figure S9e ¹H-¹H COSY spectrum of 8 in DMSO-*d*₆

Figure S9f ROESY spectrum of 8 in DMSO-d₆

Figure S9g HETLOC spectrum of 8 in DMSO-d₆

Figure S10¹H NMR spectrum of 9 in DMSO-*d*₆

Figure S11 ¹H NMR spectrum of 10 in DMSO-*d*₆

Figure S12 Relative Stereochemical Analysis of NATs

(A) The Relative stereochemistry of C-1 C-2; The Relative stereochemistry C-30 (B) of C-9 and and

Figure S13 LC-MS chromatogram of extracted ion at 333 [M - H]⁻ and 347 [M - H]⁻ from Mosher's esterification reaction of 6-10

(i) *L*-Ila reacted with *R*-MTPA-Cl, (ii) *D*-Ila reacted with *R*-MTPA-Cl, (iii) (2*R*)-Hia reacted with *R*-MTPA-Cl, (iv) (2*S*)-Hia reacted with *R*-MTPA-Cl, (v) Hydrolysate of **6** reacted with *R*-MTPA-Cl, (vi) Hydrolysate of **7** reacted with *R*-MTPA-Cl, (vii) Hydrolysate of **8** reacted with *R*-MTPA-Cl, (viii) Hydrolysate of **9** reacted with *R*-MTPA-Cl, (ix) Hydrolysate of **10** reacted with *R*-MTPA-Cl

Figure S14 LC-MS chromatogram of extracted ion at 437 [M + H]+from Mosher's esterification reaction of 6-10

(i) (4R, 5R)-Bhdo reacted with *R*-MTPA-Cl, (ii) (4R, 5R)-Bhdo reacted with *S*-MTPA-Cl, (iii) Hydrolysed sample of **6** reacted with *R*-MTPA-Cl, (iv) Hydrolysed sample of **7** reacted with *R*-MTPA-Cl, (v) Hydrolysed sample of **8** reacted with *R*-MTPA-Cl, (vi) Hydrolysed sample of **9** reacted with *R*-MTPA-Cl, (vii) Hydrolysed sample of **10** reacted with *R*-MTPA-Cl

Figure S15 LC-MS chromatogram of extracted ion at 412 [M - H]⁻ from FDLA 6-10

- (i) Standard L-threonine reacted with L-FDLA or D-FDLA to give (a) L-FDAA-L-Thr, (b) D-FDAA-L-Thr
- (ii) Standard L-allo-Thr reacted with L-FDLA or D-FDLA to give (a) L-FDAA-L-allo-Thr, (b) D-FDAA-L-allo-Thr
- (iii) Hydrolysate of 6 reacted with D-FDLA
- (iv) Hydrolysate of 7 reacted with *D*-FDLA
- (v) Hydrolysate of 8 reacted with *D*-FDLA
- (vi) Hydrolysate of 9 reacted with *D*-FDLA
- (vii) Hydrolysate of 10 reacted with D-FDLA