Supporting information

Comparison method effect on synthesize B, N, S, and P-doped carbon dots with high photoluminescence property on HeLa tumor cells

Aswandi Wibrianto^a, Siti Q. Khairunisa^b, Satya C. W. Sakti^{a,c}, Yatim L. Ni'mah^d, Bambang Purwanto^e and Mochamad Z. Fahmi*^{a,c}

^aDepartment of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia. ^bInstitute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia. ^cSupramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia ^dDepartment of Chemistry, Faculty of Science and Data Analytics, Sepuluh Nopember Institute of Technology, Keputih, Sukolilo, Surabaya 60111, Indonesia ^eDepartment of Physiology, Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia

Corresponding author: m.zakki.fahmi@fst.unair.ac.id; Fax: +62-31-5922427; Tel: +62-31-5922427

Fig S1 Photographs of doped CDs under daylight and UV-light prepared by Furnace assisted (a) and Microwave assisted (b) methods.

CDs Inner

CDs Outer

CDs Inner & Outer

Fig. S2 Molecular structure of Pyrene doped with Boron, Nitrogen, Sulphur, and Phosphor on inner structure (CDs Inner), outer structure (CDs Outer), and its compilation (CDs Inner & outer). The white, red, cyan and orange ball represent of Hydrogen, Oxygen, Carbon and doping atom positions, respectively.

Fig. S3 AFM 3D topography images of **a** B-CDs1, **b** N-CDs1, **c** S-CDs1, **d** P-CDs1, **e** B-CDs2, **f** N-CDs2, **g** S-CDs2, and **h** P-CDs2.

Fig. S4 a XRD diffractogram of B-CDs2 doped-carbon dots. B-CDs2 carbon dots XPS Spectra at b wholespectrum,cB1s,dC1s,andeO1sregions.

Fig. S5 Stability images of (a) B-CDs1, (b) B-CDs2, (c) N-CDs1, (d) N-CDs2, (e) S-CDs1, (f) S-CDs2, (g) P-CDs1, and (h) P-CDs2 at varied pH conditions.

Fig. S6 Stability images of (a) B-CDs1, (b) B-CDs2, (c) N-CDs1, (d) N-CDs2, (e) S-CDs1, (f) S-CDs2, (g) P-CDs1, and (h) P-CDs2 at varied NaCl concentration.

Fig. S7 Cell viability plot of HeLa cancer cells after 24 h incubation (a) B-CDs1, (b) N-CDs1, (c) S-CDs1, and (d) P-CDs1 by the microwave-assisted method. CC_{50} values were plotted on the red fitted curves resulted from doses response mode on Origin software. All data showed as mean \pm SD with n=3.

Fig. S8 Photograph CLSM images of HeLa cells after 10 min (a-c) and 1 h (d-f) incubation with B-CDs1.

Carbon source	Method	Doping	Size (nm)	Color	Emission (nm)	QY (%)	Ref.
Polythiophene							
derivatives	Hydrothermal	N, S	2-6	Red	680	5.4	1 and 2
Citric acid, formamide	Microwave	Ν	4	Red	640	22.9	3
Pulp-free lemon juice	Solvothermal	Ν	4.6	Red	631	28	4
Citric acid,							
ethanediamine,							-
formamide	Solvothermal	Ν	4.1	Red	627	53	5
N,N-Dimethyl-, N,N-							
dipropyl-p-					637 642		
phenylenediamine	Solvothermal	Ν	1-2	Red	645	86	6
Citric acid, urea, sodium							
fluoride	Microwave	N, F	10	Red	600	1.2	7
Pulp-free lemon juice,							0
formamide	Solvothermal	Ν	5.7	Deep-Red	704	31	8
Citric acid, urea	Hydrothermal	Ν	8.4	Red	550	54.3	9
sodium citrate, sodium	TT 1 /1 1	C	1.6	DI	4.40		10
thiosultate Deach	Hydrothermal	8	4.6	Blue	440	6/	10
nolvsaccharide							
(PGP).							
ethylenediamine	Hydrothermal	Ν	2-5	Blue	445	28.46	11
Citric acid, thiourea,	2						
boric acid	Microwave	B,N,S	3.5	Blue	450	25.8	12
Citric acid, boric acid		D	0.60	DI	1.10	21.02	Present
(B-CDs1)	Furnace	В	8.63	Blue	440	31.92	study
$(N-CD_{s1})$	Furnace	N	7 17	Blue	440	31 11	Present
Citric acid sulphuric	Furnace	11	/.+/	Diuc	440	31.44	study D
acid (S-CDs1)	Furnace	S	8.97	Blue	440	31.3	study
Citric acid, phosphoric							Present
acid (P-CDs1)	Furnace	Р	7.60	Blue	440	31.37	study
Citric acid, boric acid	Microwave						Present
(B-CDs2)	<i>Ъ.С.</i>	В	9.35	Blue	455	32.96	study
Citric acid, nitric acid $(N CD_{2}^{2})$	Microwave	N	0.11	Dhua	167	22.40	Present
(N-CDS2) Citric acid sulphuric	Microwaye	IN	9.11	Blue	40/	32.49	study
acid (S-CDs2)	WINCOW AVE	S	8.06	Blue	410	32 59	Present
Citric acid, phosphoric	Microwave	2	0.00	2140		52.07	Dresent
acid (P-CDs2)		Р	5.04	Blue	410	32.09	study

 Table S1. Summary of CDs data from various carbon source and its QY.

Regions	Position (eV)	FWHM	Area	Amount (%)
C 1s	532.0	5.306	13512.80	56.85
O 1s	284.6	6.995	6615.56	39.63
B 1s	193.0	3.891	198.87	3.52

Table S2. The relative amount of elements in B-CDs2 by XPS analysis.

CDs type	Cell model	Assays	Incubation time [h]	CC ₅₀	Reference	
	NIH 3T3			580 μg/mL		
CDP	A549	MTT	24	408 µg/mL	13	
	HCT-15			413 µg/mL		
Gd-CDs	NCI-H446	MTT	24	6.28 mg/mL	14	
Gd-CDs	U87MG	MTT	24	33.10 μg/mL	15	
N-GQDs	trypsin	soybean trypsin	1	1.31 μg/mL	16	
Cu-NCDs	HepG2	MTT	6	812.96 μg/mL	17	
GQDs	HepG2	MTT	24	12 μg/mL	18	
GQD-VO(p-dmada)	MDCK	MTC	48	62.20 μM	10	
	HepG2	G2 M1S		231.7 μM	17	
Ox-bCD NP	RAW264.7	MTT	12	>1000 µg/mL	20	
β-CD-CDs	293T	MTT	24	4.8 μg/mL	21	
DPP CDs	II. C 2) (TT	10	820 μg/mL	22	
CTS CDs	HepG2 MTT		12	1318 µg/mL	22	
B-CDs1	HeLa	CCK-8	1	5289.15 μg/mL	Present Study	
N-CDs1	HeLa	CCK-8	1	9217.56 μg/mL	Present Study	
S-CDs1	HeLa	CCK-8	1	3725.18 μg/mL	Present Study	
P-CDs1	HeLa	CCK-8	1	6710.52 μg/mL	Present Study	
B-CDs2	HeLa	CCK-8	1	2444.72 μg/mL	Present Study	
N-CDs2	HeLa	CCK-8	1	1945.04 µg/mL	Present Study	
S-CDs2	HeLa	CCK-8	1	3218.58 μg/mL	Present Study	
P-CDs2	HeLa	CCK-8	1	40318 13 µg/mL	Present Study	

Table S3. Summ	ary Data of	CDs and its	CC ₅₀ values
----------------	-------------	-------------	-------------------------

References

- 1. J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang and H. Zhou, *Nature communications*, 2014, **5**, 1-8.
- 2. L. Guo, J. Ge, W. Liu, G. Niu, Q. Jia, H. Wang and P. Wang, *Nanoscale*, 2016, **8**, 729-734.
- 3. S. Sun, L. Zhang, K. Jiang, A. Wu and H. Lin, *Chemistry of Materials*, 2016, **28**, 8659-8668.
- 4. H. Ding, Y. Ji, J.-S. Wei, Q.-Y. Gao, Z.-Y. Zhou and H.-M. Xiong, *J. Mater. Chem. B*, 2017, **5**, 5272-5277.
- 5. H. Ding, J.-S. Wei, N. Zhong, Q.-Y. Gao and H.-M. Xiong, *Langmuir*, 2017, **33**, 12635-12642.
- 6. H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. a. Tan, L. Fan and S. Yang, *Advanced Science*, 2019, **6**, 1900397.
- W. Yang, H. Zhang, J. Lai, X. Peng, Y. Hu, W. Gu and L. Ye, *Carbon*, 2018, 128, 78-85.
- 8. H. Ding, X. Zhou, B. Qin, Z. Zhou and Y. Zhao, *Journal of Luminescence*, 2019, **211**, 298-304.
- 9. T. Ogi, K. Aishima, F. A. Permatasari, F. Iskandar, E. Tanabe and K. Okuyama, *New Journal of Chemistry*, 2016, **40**, 5555-5561.
- 10. Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu and H. Zhou, *J. Mater. Chem. A*, 2015, **3**, 542-546.
- 11. J. Liao, Z. Cheng and L. Zhou, *ACS Sustainable Chemistry & Engineering*, 2016, 4, 3053-3061.
- 12. A. Pal, K. Ahmad, D. Dutta and A. Chattopadhyay, *ChemPhysChem*, 2019, **20** 1018-1027.
- 13. T. Pal, S. Mohiyuddin and G. Packirisamy, ACS Omega, 2018, 3, 831-843.
- 14. H. Liao, Z. Wang, S. Chen, H. Wu, X. Ma and M. Tan, *RSC Adv.*, 2015, 5, 66575-66581.
- 15. H. Chen, G. D. Wang, X. Sun, T. Todd, F. Zhang, J. Xie and B. Shen, *Advanced Functional Materials*, 2016, **26**, 3973-3982.
- 16. D. Su, M. Wang, Q. Liu, Z. Qu and X. Su, *New Journal of Chemistry*, 2018, **42**, 17083-17090.
- 17. Y. Liu, P. Wu, X. Wu, C. Ma, S. Luo, M. Xu, W. Li and S. Liu, *Talanta*, 2020, **210**, 120649.
- R. Gokhale and P. Singh, *Particle & Particle Systems Characterization*, 2014, **31**, 433-438.
- 19. J. Du, B. Feng, Y. Dong, M. Zhao and X. Yang, *Nanoscale*, 2020, **12**, 9219-9230.
- 20. D. Z. Y. Wei, K. Chen, X. Zhang, X. Xu, Q. Shi, S. Han, X. Chen, H. Gong, X. Li and J. Zhang, *Advanced Healthcare Materials*, 2014, **4**, 69-76.
- 21. M. Luo, Y. Hua, Y. Liang, J. Han, D. Liu, W. Zhao and P. Wang, *Biosensors and Bioelectronics*, 2017, **98**, 195-201.
- 22. H. He, X. Zheng, S. Liu, M. Zheng, Z. Xie, Y. Wang, M. Yu and X. Shuai, *Nanoscale*, 2018, **10**, 10991-10998.