(Electronic Supplementary Information)

Hydrogen bond mediated intermolecular magnetic coupling in mononuclear high spin iron(III) Schiff base complexes: Synthesis, structure and magnetic study with theoretical insight

Tanmoy Basak,^a Carlos J. Gómez-García,^b Rosa M. Gomila,^c Antonio Frontera,^d Shouvik

Chattopadhyay^{a,*}

Table: S1 Selected bond angles (°) in complexes 1 and 2.

Atoms	1	2	Atoms	1	2
01-Fe1-N1	93.57(9)	95.0(2)	N2-Fe1-N4	89.05(9)	97.2(2)
01-Fe1-N2	163.15(9)	162.26(19)	N2-Fe1-N5	96.59(9)	-
O1-Fe1-N3	87.25(9)	85.8(2)	N3-Fe1-N4	91.56(9)	172.5(2)
O1-Fe1-N4	100.80(9)	98.1(2)	N3-Fe1-N5	175.36(9)	_
O1-Fe1-N5	97.38(9)	_	N4-Fe1-N5	88.01(10)	_
N1-Fe1-N2	78.02(9)	78.0(2)	Cl1-Fe1-O1	-	96.46(15)
N1-Fe1-N3	93.20(10)	90.8(2)	Cl1-Fe1-N1	-	167.29(19)
N1-Fe1-N4	165.06(9)	82.6(3)	Cl1-Fe1-N2	_	92.41(16)
N1-Fe1-N5	86.10(11)	-	Cl1-Fe1-N3	-	95.43(14)
N2-Fe1-N3	78.78(9)	78.03(18)	Cl1-Fe1-N4	_	90.5(2)

IR and UV-Vis spectra

The IR and electronic spectra of both complexes are in good agreement with their molecular structures. The IR spectra of both complexes exhibit strong bands at ~1580 cm⁻¹, corresponding to the azomethine (C=N) stretching vibrations.¹ In complex **1**, there is a bifurcated sharp band at 2075 cm⁻¹ and 2042 cm⁻¹ attributed to the two terminal thiocyanate groups.² Complex **2** shows a sharp band around 2040 cm⁻¹, due to the presence of the terminal azide ligand.³ Both complexes show weak bands at ~3227 cm⁻¹ due to the N-H stretching vibrations of the primary amine group and another weak bands at ~3134 cm⁻¹, corresponding to the N-H stretching vibrations appear in the range 2866-2944 cm⁻¹.⁵ IR spectra of both complexes are shown in Fig.

S1.

Fig. S1: IR spectra of complexes 1 (left) and 2 (right).

The colors of solid microcrystalline products of both complexes **1** and **2** are dark green and the colors of 10^{-4} M solutions of both complexes are light green. The electronic absorption spectra of complexes **1** and **2** show similar features. The band (at 515 nm for **1** and 520 nm for **2**) in the electronic spectrum of each complex may be originated from d-d transition. The intensity of this band is weak as the d-d transitions in any d⁵ iron(III) complex is forbidden by both Laporte and spin selection rules. A stronger band (at 330 nm in both complexes) may tentatively be assigned to a superposition of the amine-to-iron(III), azide to iron(II) and phenoxido-to-iron(III) charge transfer transitions.⁶⁻⁹ For both complexes, bands around 230 and 270 nm may be assigned as intra-ligand $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions, respectively.¹⁰ The band positions and intensities are comparable with those found in similar complexes.^{6,7} UV-Vis spectra of both complexes are shown in Fig. **S2**.

Fig. S2: UV-Vis spectra of complexes 1 (left) and 2 (right).

Curie-Weiss plots

Fig. S3: Curie plot for complex 1. Solid line is the best fit to the Curie-Weiss law with C = 4.54

cm³ K mol⁻¹ and θ = -1.61 K = -1.12 cm⁻¹.

Fig. S4: Curie plot for complex 2. Solid line is the best fit to the Curie-Weiss law with C = 4.55 cm³ K mol⁻¹ and θ = -4.73 K = -3.29 cm⁻¹.

Table S2: Ligands name of the following complexes mentioned in Table 5.

Complex	CSD code/	Ligands	
	CCDC no.		
[Cu ₂ (L ^a) ₂]	-	L ^a = 2,2'-[(1,3-dimethyl-1,3-	
		propanediylidene)dinitrilo]bis- ethanol	
[Cu ₂ (L ^a) ₂]	HEAICU10	L ^a = 2,2'-[(1,3-dimethyl-1,3-	
		propanediylidene)dinitrilo]bis-ethanol	
		L ^b = 2-(2-	
[Cu ₃ (L ^b) ₂ (C ₆ H ₅ COO) ₂ Cl]Cl	DEPSAT	Hydroxyphenylmethylaminomethyl)pyridine	
[Cu2(u2-	KEDNIR	L ^c = 2-[1-[[2-	
$H_{2}(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($		(Dimethylamino)ethyl]imino]ethyl]phenol	
		L ^d = 2-((2-(Pyridin-2-	
$[Cu_2(L^d)_2(H_2O)_2(ClO_4)](ClO_4)\cdot H_2O$	FUTCON	yl)hydrazono)methyl)phenol	
[Cu(L ^e) ₂ (H ₂ O)]	BEYRAY	L ^e = 2-Carboxypyrazine	
[Zn ^{II} (H ₂ O) ₆][Cu ^{II} (L ^f) ₂ (H ₂ O) ₂]	HULMOQ	L ^f = malonic acid	
[Cu ₂ (L ^g) ₂ (H ₂ O) ₂]·2H ₂ O	MATLOJ	L ^g = 2-di1H-2-imidazolylmethylmalonic acid	
[Cu(L ^h)(H ₂ O)(NO ₃)]	NUQKOZ01	L ^h = 2-(o-hydroxyphenyliminomethyl)pyridine	

		N-oxide
[Cu(L ⁱ) ₂ (H ₂ O) ₂] _n	FAHNAE	L ⁱ = 2-hydroxy-1,4-naphthoquinone
[Cu(L ^j)(H ₂ O)]·4H ₂ O	SAGLAC	L ^j = N-Salicylideneglycine
[NiCl ₂ (L ^k) ₂]	FUJQOQ	L ^k = phenylenediamine
[Cu(HL ^I)(L ^I)(H ₂ O)] ₂ NO ₃	AETCUB	[L ^I = 2-amino-2-methylpropanol
[Cu(HL ^m)(L ^m)] ₂ (NO ₃) ₂	AETCUA	L ^m = 2-aminoethanol
[{Cu(H₂L¹)}{Cu(Hsabhea)}]BF₄	ODALAG	L ⁿ = N-salicylidene-2-(bis(2-
		hydroxyethyl)amino)ethylamine
[{Cu(H ₂ L ⁿ)} ₂](BF ₄) ₂	ODALEK	L ⁿ = N-salicylidene-2-(bis(2-
		hydroxyethyl)amino)ethylamine
[Cu(HLº)(Lº)]PF ₆	MASQIJ	L ^o = 2-pyridylmethanol
[Cu(HL ^p)(L ^p)]BF ₄ ·2H ₂ O	Υυκςοχ	HL ^p = N-t-butyl-N-2-pyridylhydroxylamine
[Cu(L ^q) ₂ (L ^r)(H ₂ O) ₂]	BUQLIJ	L ^q = 3- nitrobenzoate; L ^r = nicotinamide
cis-[Cu(L ^s) ₂ (H ₂ O) ₂]	NEDPAO	L ^s = 4-formyl-2-methoxyphenolato
trans-[Cu(L ^s) ₂ (H ₂ O) ₂]·H ₂ O	PAXTUE	L ^s = 4-formyl-2-methoxyphenolato
[Ni ₂ (L ^t)(CO ₂)(H ₂ O)(pv) ₇]	GIDNAK	L ^t = 2,6-bis(5-(2-hydroxyphenyl)-pyrazol-3-
		yl)pyridine
[{Mn(bpy)H ₂ O)}(L ^u) ₂ (μ-	AGOJOY	L ^u = µ-2.6-dichlorobenzoato: bpv= bipvridine
O){Mn(bpy)(ClO ₄)}]ClO ₄		
[{Mn(bpy)H ₂ O)}(L ^u) ₂ (μ-	AGOJUE	L ^u = u-2.6-dichlorobenzoato: bpv= bipvridine
O){Mn(bpy)(NO ₃)}]NO ₃		
[{Mn(bpy)H ₂ O)}(L ^u) ₂ (μ- Ο){Mn(bpy)(NO ₃)}]NO ₃	AGOJUE	L ^u = μ-2,6-dichlorobenzoato; bpy= bipyridine

[Fe(L ^v)Cl(H₂O)]∙MeOH	AZOXAO	L ^v = 3,6,9,12-tetra-aza-1(2,6)- pyridinacyclotridecaphane-2,13-dione
[(Ni(L ^w) ₂) ₃ (Fe(CN) ₆) ₂]·7H ₂ O	ROQCAB	L ^w = Bis(1-pyrazolyl)methane
{[Mn(OH)(OAc) ₂]·AcOH·H ₂ O} _n	HUWHOW	AcOH= acetic acid
[FeL¹(NCS)2]	2036380	HL ¹ = 2-[1-[[2-[(2- aminoethyl)amino]ethyl]imino]ethyl]phenol and
[FeL²(N₃)Cl]	2036381	HL ² = 2-(-1-(2-(2- aminoethylamino)ethylimino)ethyl)-4- methylphenol

References

1 (a) T. Basak, K. Ghosh and S. Chattopadhyay, *Polyhedron*, 2018, **146**, 81–92; (b) P. Bhowmik, S. Jana, P. P. Jana, K. Harms and S. Chattopadhyay, *Inorg. Chim. Acta*, 2012, **390**, 53–60; (c) D. Maity, S. Chattopadhyay, A. Ghosh, M. G.B. Drew and G. Mukhopadhyay, *Polyhedron*, 2009, 28, 812–818; (d) M. Das, S. Chatterjee, K. Harms, T. K. Mondal and S Chattopadhyay, *Dalton Trans.*, 2014, **43**, 2936–2947

2 (a) S. Roy, M. G. B. Drew, A. Frontera and S. Chattopadhyay, *ChemistrySelect*, 2017, **2**, 7880–7887; (b) S. Chattopadhyay, M. S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli , A. Cantoni and A. Ghosh, *Inorg. Chim. Acta*, 2006, **359**, 1367–1375.

3 T. Basak, A. Bhattacharyya, M. Das, K. Harms, A. Bauza, A. Frontera and S. Chattopadhyay, *ChemistrySelect* 2017, **2**, 6286–6295.

4 I. Nemec, R. Herchel and Z. Trávníček, *Dalton Trans.*, 2015, **44**, 4474–4484.

5 T. Basak, K. Ghosh, C. J. Gómez-García and S. Chattopadhyay, Polyhedron 2018, 146, 42–54.

6 S. Naiyaa, S. Giri, S. Biswas, M. G.B. Drew and A. Ghosh, *Polyhedron*, 2014, **73**, 139–145.

7 R.Biswas, C. Diaz, A. Bauzá, A. Frontera and A. Ghosh, *Dalton Trans.*, 2013, **42**, 12274–12283.

8 S. Jana, A. Bhattacharyya, B. N. Ghosh, K. Rissnen, S. Herrero, R. J.-Aparicio and S. Chattopadhyay, *Inorg. Chim. Acta*, 2016, **453**, 715–723.

9 F. Banse, V. Balland, C. Philouze, E. Rivierea, L. Tchertanova, and J.-J. Girerd, *Inorg. Chim. Acta*, 2003, **353**, 223-230.

10 R. Biswas, M. G. B. Drew, C. Estarellas, A. Frontera and A. Ghosh, *Eur. J. Inorg. Chem.*, **2011**, 2558–2566.