Preparation of conductive self-healing hydrogels

via interpenetrating polymer network method

Huan-Jung Wang, Yi-Zuo Chu, Chen-Kang Chen, Yi-Shun Liao and Mei-Yu Yeh*

Department of Chemistry, Chung Yuan Christian University, Republic of China, Taiwan

Contents	Page Number
1. Mechanical measurement	02
2. Resistance measurement	02
3. Conductivity measurement	02
4. LED emitting test	02
5. Fig. S1-Fig. S4	03
6. Reference	04

Mechanical measurement

The stress-strain tests of hydrogels of **P6** and **P7** were carried out with the Discovery Hybrid Rheometer (DHR-2). In addition, the hydrogels were cut into halves, and the two separate parts were contacted with a drop of 0.1M NaOH. After 1 hr at room temperature, the stress-strain tests of **P6** and **P7** were repeated to evaluate the healing efficiency.

Resistance measurement

A two-probe method was used to evaluate the resistance of the hydrogels of **P6-P8**. The resistance of the original and self-healing sample was obtained by measuring the multimeter (Pro'sKit MT-2007N), employing the two-probe method.^{S1}

Conductivity measurement

The conductivities of **P7** and **P8** were measured using a four-point probe technique and calculated using the equations derived by Van der Pauw.^{S2} **P7** and **P8** hydrogels were prepared on the non-conductive side of ITO glass slides and small points of nickel print conductive bus material were applied to the corners of the hydrogels. A constant current was applied between two adjacent corners, and the voltage across the remaining two corners was measured. (Four-point probe system, LRS4-TK1).

LED emitting test

The **P7** hydrogel was used as a conductor in a circuit to light up a LED bulb with a constant voltage of 1.5 V. In addition, the **P7** hydrogel was cut into two pieces from middle and then the damaged hydrogel was contacted with a drop of 0.1M NaOH for 1 hr at room temperature to obtain the healed hydrogel. Finally, the conductive properties of the **P7** healed hydrogel was investigated using the above circuit.

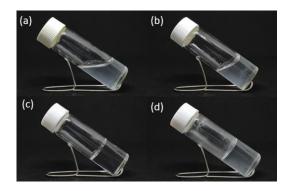


Fig. S1. Optical images of (a) 5, (b) 10, (c) 15 and (d) 20 % w/v of acrylamide.

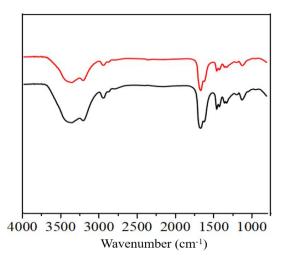
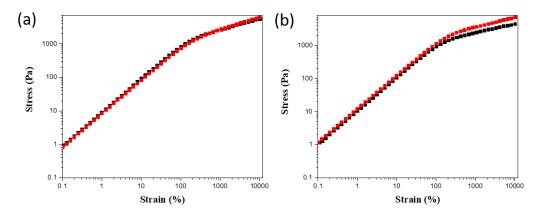
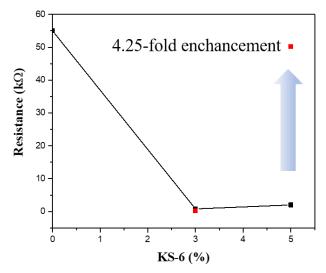




Fig. S2. FT-IR spectra of P6 before (red) and after (black) heating.

Fig. S3. The stress–strain curves of the original sample (black) and self-healing sample (red) of (a) **P6** and (b) **P7**.

Fig. S4. Resistances of the composite hydrogels prepared by using different contents of KS-6 (black for original sample; red for self-healing sample).

Reference

[S1] C. Qian, T. Higashigaki, T.-A. Asoh and H. Uyama, *ACS Appl. Mater. Interfaces* 2020, **12**, 24, 27518-27525.

[S2] L. J. Van der Pauw, Phillips Res. Rep., 1958, 13, 1-9.