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Synthetic Schemes 
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Fig. S1 Emission spectra (1 M, 20C, Ex = 470 nm, CH3CN) of 1 and 10. 
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Fig. S2 Gas chromatogram and MS analysis of a solution (1 mg/mL) of 4-Hydroxy-TEMPO and I-2959 

before UVA illumination. 
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Fig. S3 Gas chromatogram and MS analysis of a solution (1 mg/mL) of 4-Hydroxy-TEMPO and I-2959 

after UVA illumination (365 nm, 180 min, 0.4 mW cm–2) under air. 
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GC-MS Analysis  

The gas chromatograph of a solution of the model radical trap 4-Hydroxy-TEMPO and I-2959 after 

UVA illumination (Fig. S3) shows two peaks at ~11 and 18 min, attributable to the starting materials. 

Upon irradiation with ultraviolet light of the same solution we observe the formation of two prominent 

products with peaks at 8.3 and 11.2 min, respectively.  

MS analysis revealed the peak at 11.2 min to be 4-Hydroxy-TEMPO-H. It is known that free radicals 

(R•), such as those produced by the photoinduced decomposition of I-2959, can be trapped by TEMPO• 

to provide the cross-coupling product TEMPO-R. Nonetheless, if the product radical bears a weak C-H 

bond next to the radical site (or if trapping is sterically hindered) disproportionation to form TEMPO-H 

and a product alkene is also likely to occur.  

 

We attribute the peak at 8.3 min to 2,2,6,6-tetramethyl-4-piperidinol (Fig. S3) formed upon 

fragmentation in positive mode of a TEMPO-R species obtained by radical trapping of ketyl radical 

from I-2959 (Scheme 1, main article) by 4-Hydroxy-TEMPO, and according to the typical 

fragmentation pattern of TEMPO-R.S1 
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Fig. S4 Absorption spectra of a CH3CN solution of I-2959 (10 M, 20C) before and after ultraviolet 

irradiation (365 nm, 0-15 min, 0.4 mW cm–2).  

 

 

 

 

 

Fig. S5 Absorption (a, close-up of the visible region) and emission (b, Ex = 470 nm) spectra of a CH3CN 

solution of 1 (1 M, 20C) before and after ultraviolet irradiation (365 nm, 0-15 min, 0.4 mW cm–2).  
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Fig. S6 Temporal evolution of the emission spectra of an aerated CH3CN solution of 1 (1 M, 20C, Ex 

= 470 nm) and I-2959 (10 M) after ultraviolet irradiation (365 nm, 0.4 mW cm–2). 

 

 

Fig. S7 Emission spectra of a CH3CN solution of 1 (1 M, 20C, Ex = 470 nm) and I-2959 (10 M) 

exposed to visible light (505 nm, 30 min) after being previously ‘activated’ with UVA illumination. 
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Fig. S8 Absorption (a) and emission (b, Ex = 470 nm) spectra of a CH3CN solution of 1 (1 M, 20C) 

and I-2959 (10 M) before and after ultraviolet irradiation (365 nm, 0-15 min, 0.4 mW cm–2) under N2 

atmosphere.  

 

 

 

 

Fig. S9 Temporal evolution of the emission spectra of a degassed CH3CN solution of 1 (1 M, 20C, 

Ex = 470 nm) and I-2959 (10 M) after ultraviolet irradiation (365 nm, 0.4 mW cm–2). 
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Fig. S10 Absorption (a) and emission (b, Ex = 470 nm) spectra of a 1% PMMA/CH3CN solution of 1 (1 

M, 20C) and I-2959 (10 M) before and after ultraviolet irradiation (365 nm, 0-15 min, 0.4 mW cm–2) 

under air. 

 

 

 

 

 

Fig. S11 (a) Absorption spectrum of a PMMA (10% w/v in MeCN) film containing 1 (0.5 mM) and I-

2959 (5 mM). (b) Emission (Ex = 470 nm) spectra of the same film before and after ultraviolet irradiation 

(LED365, 0-15 min).  
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Fig. S12 Emission spectra of a PMMA (10% w/v in MeCN) film containing 1 (0.5 mM, Ex = 470 nm) 

before and after ultraviolet irradiation (LED365, 0-15 min). 

 

 

 

 

 

 

 

 

 

 

 

Fig. S13 Photographs of PMMA films doped with 1 (0.5 mM) before (a) and immediately after (b) 

exposure at 365 nm for 3 min through a RU-shaped 3D printed mask. 
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Thin Film Thickness and Maximum AgNP-Fluorophore Distance 

The thickness d of a thin PMMA film spin-coated onto a glass microscope slide was estimated using a 

previously reported procedure (ref. 26 main article) which utilizes the principles of thin film interference.S2 

A portion of light incident normal to the sample surface experiences a phase shift φ1 equivalent to one half 

wavelength upon specular reflection at the air/polymer interface, where the index of refraction of air nair 

(1.00) is less than that of the polymer nPMMA (1.49).S3 The remaining light penetrates the film and slows 

down as it moves through the polymer. It is reflected at the polymer/glass interface and emerges from the 

material having traveled an extra distance 2d, equal to twice the film thickness, relative to the light 

reflected at the air/polymer surface. Since nPMMA is less than nglass (1.50), specular reflection at the 

polymer/glass interface induces a phase shift φ2 of 2d + λ/2. The relative phase shift Φ between the two 

spectrally reflected waves can therefore be computed as follows. 

𝛷 = 𝜑2 − 𝜑1 

𝛷 = 2𝑑 +
𝜆𝑃𝑉𝑃

2
−

𝜆𝑃𝑉𝑃

2
= 2𝑑 

The two traveling waves are moving in the same direction and can interfere constructively or destructively 

with one another. To determine which type of interference occurs, UV-visible spectroscopy was used to 

obtain the specular reflectance of the sample as a function of wavelength (Figure S14). This was done by 

subtracting the diffuse reflectance spectrum of the sample from its total reflectance spectrum, assuming a 

flat sample of uniform thickness. As shown in Figure S14 below, specular reflection is lower for the 

PMMA film relative to the glass substrate all across the UV-visible region, indicative of partial destructive 

interference between the two waves. The relative phase shift Φ can therefore be set equal to the condition 

for destructive interference as follows; 

(𝑚 +
1

2
)𝜆𝑃𝑉𝑃 = 𝛷 = 2𝑑 

where m is an integer (0, 1, 2…) corresponding to the periodic nature of interference patterns. Since the 

dominant interference fringe is of the zeroth order, m is set equal to zero here. The relationship between 

wavelength in the polymer (where the difference in path length occurs) and wavelength measured in air 

by UV-visible spectroscopy is;  

𝜆𝑃𝑉𝑃 =
𝜆𝑎𝑖𝑟

𝑛𝑃𝑀𝑀𝐴
 

Substituting for λPMMA and isolating the film thickness d, we arrive at; 

𝑑 =
𝜆𝑎𝑖𝑟

4𝑛𝑃𝑀𝑀𝐴
 

 

As shown in Figure S14, the dominant wavelengths of specular reflectance are 350, 500 and 620 nm. 
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Fig. S14 Specular reflectance as a function of wavelength for (a) a thin PMMA film and (b) the bare 

glass substrate. 

The PMMA film thickness range can therefore be estimated as follows; 

Using 350 nm; 

𝑑 =
𝜆𝑎𝑖𝑟

4𝑛𝑃𝑉𝑃
=

350 nm

4(1.49)
= 58.7 = 59 nm 

Using 500 nm; 

𝑑 =
𝜆𝑎𝑖𝑟

4𝑛𝑃𝑉𝑃
=

500 nm

4(1.49)
= 83.9 = 84 nm 

Using 620 nm; 

𝑑 =
𝜆𝑎𝑖𝑟

4𝑛𝑃𝑉𝑃
=

620 nm

4(1.49)
= 104 nm 

 

It follows that the PMMA film thickness is approximately between 59 and 104 nm when prepared 

according to the reported spin coating conditions in the absence of AgNP. Not only would the presence 

of AgNP have impacted specular reflectance measurements, the thickness of the PMMA layer is more 

important than the total sample thickness because we are more interested in determining the maximum 

possible distance between AgNP and fluorophores distributed throughout the PMMA matrix, which can 

evidently be as high as about 82 nm. Previous research has shown that preparing such films atop glass 

slides coated with these same AgNP caused the total sample thickness to increase by 22 ± 5 nm, for a total 

sample thickness in the range of 81-126 nm.S4  
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Fig. S15 (a) Extinction spectrum of AgNP in MilliΩ H2O. Absorption spectrum of a single coated PMMA 

film containing 1 (0.5 mM) and I-2959 (50 mM) atop AgNP (b), compared with the absorption spectrum 

of a glass slide functionalized with AgNP (c). 
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