Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Time-resolved detection of SDS-induced conformational changes in α -synuclein by a microstopped-flow system

Shunki Takaramoto¹, Yusuke Nakasone¹, Kei Sadakane², Shinsaku Maruta², Masahide Terazima¹

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan

Figure SI-1. (A) Typical TG signal of NSP at 3 mM SDS ($q^2 = 3.6 \times 10^{12} \text{ m}^{-2}$). Inset: molecular structure of NSP. (B) Dependence of the TG signal on lower [SDS] condition at $q^2 = 3.6 \times 10^{12} \text{ m}^{-2}$. (C) The TG signals of NSP at 0 mM (blue), and 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50 mM SDS used for calculation of *D* of the SDS micelle (red) at $q^2 = 3.9 \times 10^{12} \text{ m}^{-2}$. The broken lines show fitting curves based on Eq. (2).

Figure SI-2. q^2 dependence of the TG signal of α Syn in the presence of 2 mM SDS (A). The q^2 values are 8.5×10^{12} m⁻², 3.9×10^{12} m⁻², 9.4×10^{11} m⁻², and 2.5×10^{11} m⁻², from left to right. (B) q^2 t plot of the rise-decay profiles at 2 mM SDS. (C) The q^2 dependence at 1 mM SDS. The q^2 values are the same as that of (A). (D) The q^2 t plot of the rise-decay profiles at 1 mM SDS.

Figure SI-3. Diffusion signals of Bovine Serum Albumin labeled with NSP at several delay times after mixing two identical solutions containing 20 μ M protein in PBS buffer ($q^2 = 3.8 \times 10^{12} \text{ m}^{-2}$).