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Figure S1 Synthetic procedure of 2,3-DCTBT

Figure S2. The IR spectrum of 2, 3-DCTBT.

Figure. S2 shows the FTIR of 2,3 - DCTBT. There are two absorption peaks at 1503 

cm-1 and 1622 cm-1, which are the two characteristic absorption peaks of benzene ring. 

Three obvious peaks at 1662cm-1,1570cm-1 and 1447cm-1 are the absorption peaks of 

C = N. There is a strong absorption peak at 2230cm-1, which is absorption peak of -

CN. Generally, strong absorption peaks appear at 1700 cm-1 for carbonyl group, and 

obvious double peaks appear at 3300 cm-1 – 3600 cm-1 for amino group. These 

characteristic absorption peaks do not appear in Figure S1, indicating that there is no 

carbonyl and amino group in organic matter, which is consistent with the literature 

report, indicating that 2,3 - DCTBT is successfully synthesized.



Figure S3. a), b) and c)SEM images of Fe/N/C-800. d), e) and f) TEM images of 
Fe/N/C-800.

Figure S4. a), b) and c)SEM images of Fe/N/C-900. d), e) and f) TEM images of Fe/N/C-900.



Figure S5. a), b) and c)SEM images of Fe/N/C-1000. d), e) and f) TEM images of Fe/N/C-
1000.

Figure S6. a) and b) SEM images of Fe/N/C-900. c), d) and e) Elemental mapping 

image of Fe/N/C-900.



Figure S7. Full XPS spectra of Fe/N/C-800, Fe/N/C-900 and Fe/N/C-1000.



Figure S8. The high-resolution Fe 2p spectra of d) Fe/N/C-800, e) Fe/N/C-900 and f) 

Fe/N/C-1000. The high-resolution C 1s spectra of a) Fe/N/C-800, b) Fe/N/C-900 and 

c) Fe/N/C-1000. 

Table S1 The BET surface area and pore volume of Fe/N/C-800,900,1000

Sample
BET surface area

(m2g-1)

Micropore volume

(cm3g-1)

Fe/N/C-800 219.996 0.058

Fe/N/C-900 267.018 0.139

Fe/N/C-1000 177.154 0.067



Table S2 Summary of performance for ORR in 0.1 M KOH.

Catalysts
E onset

(V vs. RHE)
E 1/2

(Vs. RHE)
Reference

Fe/N/C-900 0.98 0.82 This work

SA-Fe/NG / 0.8 1

Fe/OES 1.0 0.85 2

Fe–N/C–700 0.956 0.84 3

Fe–N/C catalyst 0.923 0.81 4

p-CNT@Fe1.5@GL 0.91 0.81 5

Fe-N x /C catalyst 0.94 0.82 6

Fe-ISAs/CN 0.9 / 7

FeN4 -GN 1.05 0.86 8

Fe-N-SCCFs 1.03 0.883 9

p–Fe–N–CNFs 0.85 0.74 10

Fe–SA/PC–700–5 / 0.91 11
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