Electronic Supporting Information

Efficient access to 3'-*O*-phosphoramidite derivatives of tRNA related *N*⁶-threonylcarbamoyladenosine (t⁶A) and 2-methylthio-*N*⁶-threonylcarbamoyladenosine (ms²t⁶A)

Katarzyna Debiec, Elzbieta Sochacka*

Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; K.D. e-mail: <u>katarzyna.debiec@dokt.p.lodz.pl</u>; E.S.* e-mail: <u>elzbieta.sochacka@p.lodz.pl</u>

Table of Contents:

I.	Gen	eral remarks2	
II.	Exp	erimental details for synthesis 6a, 6b3	
2	.1	Synthesis of t ⁶ A-phosphoramidite 6a from 4a3	
2	.2	Synthesis of ms ² t ⁶ A-phosphoramidite 6b from 4b6	
III. Spectroscopic data9			
3	.1	NMR and IR spectra of threonine derivatives9	
3	.2	NMR spectra of adenosine derivatives15	
3	.3	HR-MS spectra of adenosine derivatives	

I. General remarks

Commercial reagents and analytical grade solvents were used without additional purification unless otherwise stated. Analytical thin layer chromatography (TLC) was done on silica gel coated plates (60 F254, Supelco) with UV light (254 nm) or the ninhydrin test (for amino acids) detection. The products were purified by column chromatography on a silica gel 60 (mesh 230 – 400, Fluka) eluted with the indicated solvent mixtures. NMR spectra were recorded using a 700 MHz (for ¹H) instrument, 176 MHz for ¹³C and 101 MHz for ³¹P. Chemical shifts (δ) are reported in ppm relative to residual solvent signals CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR; DMSO-d₆: 2.50 ppm for ¹H NMR, 39.52 ppm for ¹³C NMR. The signal multiplicities are described as s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublets of doublets), dq (doublet of quartets), t (triplet), td (triplet of doublets), q (quartet), qd (quartet of doublets), m (multiplet), and br s (broad singlet). High-resolution mass spectra were recorded on Synapt G2Si mass spectrometer (Waters) equipped with an ESI source and quadrupole-Time-of-flight mass analyser. IR data were recorded on an FT-IR ALPHA instrument (Bruker) equipped with a Platinum ATR QuickSnap[™] module. Analytical HPLC of nucleosides were performed on a Shimadzu Prominence HPLC system equipped with an SPD-M20A spectral photodiode array detector using a Kinetex® column (RP, C18, 5 µm, 4.6 × 250 mm, 100 Å, Phenomenex). Analyses were run at 30 °C and the elution profiles were UV monitored at λ = 254 nm.

II. Experimental details for synthesis 6a, 6b.

2.1 Synthesis of t⁶A-phosphoramidite 6a from 4a.

<u>*N*-[[9-(β-D-Ribofuranosyl)-purin-6-yl]carbamoyl]-*O-tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5a**)</u>

Ref: K. Debiec, M. Matuszewski, K. Podskoczyj, G. Leszczyńska, E. Sochacka, *Chem. Eur. J.*, **2019**, *25*, 13309; F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, *Terahedron*, **1984**, *40*, 59.

To protected adenosine **4a** (0.3 g, 0.40 mmol) the solution of distilled solvents: Et₃N/MeOH (4.5 mL, 1:9 v/v) was added. The reaction mixture was stirred for 24 h at room temperature and the solvents were removed under reduced pressure. The oily residue was co-evaporated with toluene (2 x 5 mL). The crude product was purified by column chromatography (silica gel, 0-5 % MeOH in CHCl₃) to obtain pure product **5a** in 90 % yield (0.23 g, 0.36 mmol). **TLC:** Rf = 0.21 (CHCl₃/MeOH, 95:5 v/v);

¹**H NMR** (700 MHz, DMSO-*d*₆) δ : 9.91-9.89 (m, 2H, NH-6, NH Thr), 8.69 (s, 1H, H-8), 8.41 (s, 1H, H-2), 6.00 (d, 1H, *³J*=5.6 Hz, H-1'), 5.52 (br s, 1H, 2'OH), 5.24 (s, 1H, 3'OH), 5.11 (s, 1H, 5'OH), 4.59 (t, 1H, *³J*=5.2 Hz, H-2'), 4.48 (qd, 1H, *³J*=6.3 Hz, *³J*=1.9 Hz, CH- β Thr), 4.42 (dd, 1H, *³J*=9.0 Hz, *³J*=1.9 Hz, CH- α Thr), 4.21-4.16 (m, 2H, H-3', O-CH TMSE), 4.15-4.07 (m, 1H, O-CH TMSE), 3.98 (q, 1H, *³J*=3.9 Hz, H-4'), 3.70 (dd, 1H, *²J*=12.0 Hz, *³J*=4.0 Hz, H-5'), 3.58 (dd, 1H, *²J*=12.0 Hz, *³J*=4.0 Hz, H-5''), 1.19 (d, 3H, *³J*= 6.3 Hz, CH₃ Thr), 0.99-0.93 (m, 2H, Si-CH₂ TMSE), 0.89 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.08 (s, 3H, Si-CH₃ TBDMS), 0.01 (s, 3H, Si-CH₃ TBDMS), -0.00 (s, 9H, Si(CH₃)₃ TMSE).

N-[[9-(5'-*O*-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl)-purin-6-yl]carbamoyl]-*O*-tertbutyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5a'**)

Ref: M. Sundaram, P. F. Crain, D. R. Davis, J. Org. Chem., 2000, 65, 5609;

To a stirred solution of nucleoside **5a** (0.2 g, 0.32 mmol) in dry pyridine (3.0 mL) DMTrCl (0.13 g, 0.38 mmol) was added. The reaction was stirred for 20 h at room temperature. After this time the reaction mixture was cooled to 0°C in an ice bath and quenched with H₂O (4 mL) and stirred at 0°C for 15 min. The mixture was extracted with CHCl₃ (2 x 15 mL) and combined organic layers were dried over anhydrous MgSO₄, filtered and the solvent was evaporated. The oily residue was coevaporated with toluene (2 x 8 mL). The crude product was purified by column chromatography (silica gel, 0-1 % MeOH in CHCl₃) to obtain **5a'** as a white solid in 90 % yield (0.27 g, 0.29 mmol). **TLC:** $R_f = 0.43$ (CHCl₃/MeOH, 95:5 v/v).

¹**H NMR** (700 MHz, DMSO-*d*₆) δ : 9.93 (d, ³*J*=8.9 Hz, 1H, NH Thr), 9.90 (s, 1H, NH-6), 8.58 (s, 1H, H-8), 8.34 (s, 1H, H-2), 7.36-7.33 (m, 2H, H_{Ar} DMTr), 7.24-7.19 (m, 6H, H_{Ar} DMTr), 7.19-7.15 (m, 1H, H_{Ar} DMTr), 6.81-6.78 (m, 4H, H_{Ar} DMTr), 6.03 (d, 1H, ³*J*=4.5 Hz, H-1'), 5.61 (br s, 1H, 2'OH), 5.28 (br s, 1H, 3'OH), 4.81 (t, 1H, ³*J*= 4.8 Hz, H-2'), 4.50 (qd, 1H, ³*J*=6.2 Hz, ³*J*=1.9 Hz, CH- β Thr), 4.42 (dd, 1H, ³*J*=9.1 Hz, ³*J*=1.8 Hz, CH- α Thr), 4.36 (t, 1H, ³*J*=5.1 Hz, H-3'), 4.19 (ddd, 1H, ²*J*=11.0 Hz, ³*J*=10.0 Hz, ³*J*=6.8 Hz, O-CH TMSE), 4.15-4.08 (m, 2H, H-4', O-CH TMSE), 3.71 (s, 3H, O-CH₃ DMTr), 3.71 (s, 3H, O-CH₃ DMTr), 3.28-3.22 (m, 2H, H-5', H-5''), 1.21 (d, 3H, ³*J*=6.3 Hz, CH₃ Thr), 0.99-0.93 (m, 2H, Si-CH₂ TMSE), 0.89 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.08 (s, 3H, Si-CH₃ TBDMS), 0.01 (s, 3H, Si-CH₃ TBDMS), -0.01 (s, 9H, Si(CH₃)₃ TMSE).

<u>N-[[9-(2'-0-tert-butyldimethylsilyl-5'-0-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl)-purin-6-yl]</u> carbamoyl]-0-tert-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5a**")

Ref: K. Onizuka, M.E. Hazemi, J.M. Thomas , L.R. Monteleone, K. Yamada, S. Imoto, P.A. Beal, F. Nagatsugi, *Bioorg Med Chem.*, 2017, 25, 2191; V. Boudou, J. Langridge, A. V. Aerschot, C. Hendrix, A. Millar, P. Weiss, P. Herdewijn, Helv. Chim. Acta, 2000, 83, 152;

5'-DMTr nucleoside **5a'** (0.2 mg, 0.22 mmol) was dissolved in freshly distilled THF (1.0 mL) then anhydrous pyridine (0.09 mL, 1.1 mmol) and AgNO₃ (56 mg, 0.33 mmol) was added. The reaction mixture was stirred at room temperature for 30 min in darkness. Then TBDMS-Cl (0.06 g, 0.4 mmol) was added and stirring was continued at room temperature for 2 h. After this time, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and washed with CH₂Cl₂. The solution was extracted with saturated NaHCO₃ (2 x 10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The oily residue was

co-evaporated with toluene (2 x 5 mL) and the crude product was purified by the column chromatography (silica gel, 0-10 % acetone in CHCl₃). The pure 2'-isomer **5a**" was obtained as a white solid in 57 % yield (0.13 g, 0.13 mmol. The 3'-regioisomer (0.06 g, 0.06 mmol) was dissolved in dry methanol with few drops of TEA, to give equimolar mixture of 2' and 3' TBDMS isomers from which 2'-TBDMS nucleoside was chromatographically isolated to give finally 0.16 g of **5a**" (0.15 mmol; 70 % yield). **TLC:** $R_f = 0.42$ (CHCl₃/MeOH, 98:2 v/v).

¹**H NMR** (700 MHz, DMSO-*d*₆) δ : 9.93 (br s, 1H, NH Thr), 9.92 (s, 1H, NH-6), 8.60 (s, 1H, H-8), 8.28 (s, 1H, H-2), 7.42-7.38 (m, 2H, H_{Ar} DMTr), 7.29-7.26 (m, 6H, H_{Ar} DMTr), 7.26-7.22 (m, 1H, H_{Ar} DMTr), 7.21-7.17 (m, 4H, H_{Ar} DMTr), 6.84-6.80 (m, 4H, H_{Ar} DMTr), 6.03 (d, 1H, ³*J*=5.3 Hz, H-1'), 5.17 (d, 1H, ³*J*=5.7 Hz, 3'0H), 5.01 (t, 1H, ³*J*=5.2 Hz, H-2'), 4.48 (qd, 1H, ³*J*=6.3 Hz, ³*J*=2.0 Hz, CH- β Thr), 4.42 (dd, 1H, ³*J*=9.0 Hz, ³*J*=1.9 Hz, CH- α Thr), 4.29-4.24 (m, 1H, H-3'), 4.18 (ddd, 1H, ³*J*=11.1 Hz, ³*J*=9.8 Hz, ³*J*=6.8 Hz, 0-CH TMSE), 4.15-4.09 (m, 2H, H-4', 0-CH TMSE), 3.71 (s, 6H, 2x 0-CH₃ DMTr), 3.34-3.31 (m, 1H, H-5'), 3.26 (dd, 1H, ²*J*=10.5 Hz, ³*J*=5.2 Hz, H-5''), 1.19 (d, 3H, ³*J*=6.2 Hz, CH₃ Thr), 0.96-0.93 (m, 2H, Si-CH₂ TMSE), 0.85 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.73 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.06 (s, 3H, Si-CH₃ TBDMS), -0.00 (s, 3H, Si-CH₃ TBDMS), -0.02 (s, 9H, Si(CH₃)₃ TMSE), -0.05 (s, 3H, Si-CH₃ TBDMS), -0.16 (s, 3H, Si-CH₃ TBDMS).

<u>N-[[9-(2'-*O*-tert</u>-butyldimethylsilyl-3'-(2-cyanoethyl-*N*,*N*-diisopropylphosphoramidite)-5'-*O*-(4,4'dimethoxytrityl)-β-D-ribofuranosyl)-purin-6-yl]carbamoyl]-*O*-tert-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (6a)

Ref: V. Boudou, J. Langridge, A. V. Aerschot, C. Hendrix, A. Millar, P. Weiss, P. Herdewijn, Helv. Chim. Acta, 2000, *83*, 152;

To a stirred solution of 5'-DMTr, 2'-TBDMS-t⁶A **5a**" (0.15 mg, 0.14 mmol) in freshly distilled CH₂Cl₂ (0.8 mL) anhydrous DIPEA was added (0.1 mL, 0.56 mmol) under argon atmosphere. Then 2-cyanoethyl-*N*,*N*-diisopropylchlorophosphoramidite (0.06 ml; 0.28 mmol) was added dropwise. The reaction was stirred for 3 h under argon atmosphere at room temperature. The reaction mixture was diluted with CH_2Cl_2 and washed with 5 % aq NaHCO₃ (2 x 10 mL) and H_2O (10 mL), then the organic layer was dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by the flash chromatography (silica gel, petroleum ether/acetone, 2:1 v/v) to obtain pure product **6a** as a white solid in 92 % yield (0.16 g; 0.13 mmol). **TLC:** R_f = 0.52 (CHCl₃/acetone, 95:5 v/v).

³¹**P NMR**: (176,03 MHz MHz, C₆H₆) δ: 149.89, 148.04.

2.2 Synthesis of ms²t⁶A-phosphoramidite 6b from 4b.

<u>N-[[9-(β-D-Ribofuranosyl)-2-methylthiopurin-6-yl]carbamoyl]-*O-tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5b**)</u>

Ref: K. Debiec, M. Matuszewski, K. Podskoczyj, G. Leszczyńska, E. Sochacka, *Chem. Eur. J.*, **2019**, *25*, 13309; F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, *Terahedron*, **1984**, *40*, 59.

To fully-protected nucleoside **4b** (156 mg, 0.20 mmol) solution of distilled solvents: TEA/MeOH (2.2 mL, 1:9 v/v) was added. The reaction mixture was stirred for 24 h at room temperature and the solvents were removed under reduced pressure. The oily residue was co-evaporated with toluene (2 x 5 mL). The crude product was purified by column chromatography (silica gel, 0-4 % MeOH in CHCl₃) to obtain pure product **5b** in 85 % yield (114 mg, 0,17 mmol). **TLC:** $R_f = 0.18$ (CHCl₃/MeOH, 95:5 v/v);

¹**H NMR** (700 MHz, DMSO-*d*₆) δ: 9.89 (s, 1H, NH-6), 9.26 (d, 1H, ³*J*=8.6 Hz, NH Thr), 8.51 (s, 1H, H-8), 5.93 (d, 1H, ³*J*=5.7 Hz, H-1'), 5.48 (d, 1H, ³*J*=6.0 Hz, 2'OH), 5.21 (d, 1H, ³*J*=5.0 Hz, 3'OH), 4.99 (t, 1H, ³*J*=5.6 Hz, 5'OH), 4.63 (q, 1H, ³*J*=5.6 Hz, H-2'), 4.48-4.42 (m, 2H, CH-α Thr, CH-β Thr), 4.24-4.16 (m, 2H, H-3', O-CH TMSE), 4.13-4.10 (m, 1H, O-CH TMSE), 3.94-3.66 (q, 1H, ³*J*=4.2 Hz, H-4'), 3.66 (ddd, 1H, ³*J*=11.9 Hz, ³*J*=5.5 Hz, ³*J*=4.3 Hz, H-5'), 3.56 (ddd, 1H, ³*J*=11.8 Hz, ³*J*=5.7 Hz, ³*J*=4.4 Hz, H-5"H), 2.56 (s, 3H, S-CH₃), 1.19 (d, 3H, ³*J*=6.1 Hz, CH₃ Thr), 1.04-0.91 (m, 2H, Si-CH₂ TMSE), 0.85 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.08 (s, 3H, Si-CH₃ TBDMS), 0.03 (s, 3H, Si-CH₃ TBDMS), 0.01 (s, 9H, Si(CH₃)₃ TMSE).

N-[[9-(5'-*O*-(4,4'-dimethoxytrityl)-β-p-ribofuranosyl)-2-methylthiopurin-6-yl]carbamoyl]-*Otert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5b**')

Ref: K. Onizuka, M.E. Hazemi, J.M. Thomas , L.R. Monteleone, K. Yamada, S. Imoto, P.A. Beal, F. Nagatsugi, *Bioorg Med Chem.*, **2017**, *25*, 2191; V. Boudou, J. Langridge, A. V. Aerschot, C. Hendrix, A. Millar, P. Weiss, P. Herdewijn, Helv. Chim. Acta, **2000**, *83*, 152;

To a stirred solution of free ribose nucleoside **5b** (105 mg, 0.16 mmol) in dry pyridine (1.2 mL) DMTrCl (80 mg, 0.24 mmol) was added. The reaction was stirred for 15 h at room temperature. After this time the mixture was cooled to 0°C in an ice bath and quenched with H₂O (2 mL) and stirred at 0°C for 15 min. The mixture was extracted with CH_2Cl_2 (2x 10 mL) and combined organic layers were dried over anhydrous MgSO₄, filtered and the solvent was evaporated. The oily residue was co-evaporated with toluene (2 x 5 mL). The crude product was purified by column chromatography (silica gel, 0-2 % MeOH in CHCl₃) to obtain **5b**' as a white solid in 91 % yield (143 mg, 0.14 mmol). **TLC:** $R_f = 0.43$ (CHCl₃/MeOH, 95:5 v/v).

¹**H NMR** (700 MHz, DMSO-*d*₆) δ : 9.91 (s, 1H, NH-6), 9.29 (d, 1H, ³*J*=8.4 Hz, NH Thr), 8.42 (s, 1H, H-8), 7.35-7.27 (m, 2H, H_{Ar} DMTr), 7.23-7.18 (m, 6H, H_{Ar} DMTr), 7.18-7.15 (m, 1H, H_{Ar} DMTr), 6.81-6.77 (m, 4H, H_{Ar} DMTr), 5.98 (d, 1H, ³*J*=4.2 Hz, H-1'), 5.58 (d, 1H, ³*J*=5.4 Hz, 2'OH), 5.24 (d, 1H, ³*J*=5.9 Hz, 3'OH), 4.77 (q, ³*J*=5.3 Hz, H-2'), 4.49-4.44 (m, 2H, CH- α Thr, CH- β Thr), 4.37 (q, 1H, ³*J*=5.5 Hz, H-3'), 4.22-4.18 (m, 1H, O-CH TMSE), 4.14-4.06 (m, 2H, H-4', O-CH TMSE), 3.71 (s, 3H, O-CH₃ DMTr), 3.71 (s, 3H, O-CH₃ DMTr), 3.25 (dd, 1H, ²*J*=10.3 Hz, ³*J*=5.9 Hz, H-5'), 3.18 (dd, 1H, ²*J*=10.3 Hz, ³*J*=3.4 Hz, H-5''), 2.43 (s, 3H, S-CH₃), 1.22 (d, 3H, ³*J*=6.3 Hz, CH₃ Thr), 1.02-0.95 (m, 2H, Si-CH₂ TMSE), 0.86 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.09 (s, 3H, Si-CH₃ TBDMS), 0.04 (s, 3H, Si-CH₃ TBDMS), 0.01 (s, 9H, Si(CH₃)₃ TMSE).

<u>*N*-[[9-(2'-*O*-*tert*-butyldimethylsilyl-5'-*O*-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl)-2-methylthiopurin-6-yl]carbamoyl]-*O*-*tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**5b**")</u>

Ref: K. Onizuka, M.E. Hazemi, J.M. Thomas , L.R. Monteleone, K. Yamada, S. Imoto, P.A. Beal, F. Nagatsugi, *Bioorg Med Chem.*, 2017, 25, 2191; V. Boudou, J. Langridge, A. V. Aerschot, C. Hendrix, A. Millar, P. Weiss, P. Herdewijn, Helv. Chim. Acta, 2000, 83, 152;

To solution of 5'-DMTr nucleoside **5b'** (122 mg, 0.13 mmol) in freshly distilled THF (0.50 mL), anhydrous pyridine (50 μ L, 0.65 mmol) and AgNO₃ (32 mg, 0.19 mmol) were added. The reaction mixture was stirred at room temperature for 30 min in darkness. Then TBDMS-Cl (34 mg, 0.23 mmol) was added and stirring was continued at room temperature for 2 h. After this time, the reaction mixture was diluted with CH₂Cl₂ (5 mL), filtered through Celite and washed with CH₂Cl₂. The solution was extracted with saturated NaHCO₃ (2 x 5 mL) and brine (5 mL). The organic layer

was dried over MgSO₄, filtered and concentrated under reduced pressure. The oily residue was co-evaporated with toluene (2 x 5 mL) and the crude product was purified by the column chromatography (silica gel, 0-8 % acetone in CHCl₃). The pure 2'-isomer **5b**" was obtained as a white solid in 57 % yield (80 mg, 0.074 mmol). The 3'-regioisomer (38 mg, 0.035 mmol) was dissolved in methanol with few drops of TEA, to give equimolar mixture of 2' and 3' TBDMS isomers from which 2'-TBDMS nucleoside was chromatographically isolated to give finally 99 mg of **5b**" (0.091 mmol; 70 % yield). **TLC:** $R_f = 0.42$ (CHCl₃/MeOH, 98:2 v/v).

¹**H** NMR (700 MHz, DMSO- d_6) δ : 9.94 (s, 1H, NH-6), 9.27 (d, 1H, 3J =8.6 Hz, NH Thr), 8.41 (s, 1H, H-8), 7.36-7.32 (m, 2H, H_{Ar} DMTr), 7.26-7.21 (m, 6H, H_{Ar} DMTr), 7.21-7.16 (m, 1H, H_{Ar} DMTr), 6.85-6.80 (m, 4H, H_{Ar} DMTr), 5.99 (d, 1H, 3J =4.5 Hz, H-1'), 5.19 (d, 1H, 3J =6.1 Hz, 3'OH), 4.89 (t, 1H, 3J =4.7 Hz, H-2'), 4.48-4.42 (m, 2H, CH- α Thr, CH- β Thr), 4.30 (q, 1H, 3J =5.6 Hz, H-3'), 4.20-4.18 (m, 1H, O-CH TMSE), 4.15-4.06 (m, 2H, H-4', O-CH TMSE), 3.72 (s, 3H, O-CH₃ DMTr), 3.71 (s, 3H, O-CH₃ DMTr), 3.31-3.30 (m, 1H, H-5'), 3.23 (dd, 1H, 2J =10.3 Mz, 3J =3.4 Hz, H-5"), 2.39 (s, 3H, S-CH₃), 1.21 (d, 3H, 3J =6.2 Hz, CH₃ Thr), 0.99-0.95 (m, 2H, Si-CH₂ TMSE), 0.85 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.77 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.08 (s, 3H, Si-CH₃ TBDMS), 0.03 (s, 3H, Si-CH₃ TBDMS), -0.00 (s, 9H, Si(CH₃)₃ TMSE), -0.02 (s, 3H, Si-CH₃ TBDMS), -0.11 (s, 3H, Si-CH₃ TBDMS).

<u>N-[[9-(2'-*O*-tert</u>-butyldimethylsilyl-3'-(2-cyanoethyl-*N*,*N*-diisopropylphosphoramidite)-5'-*O*-(4,4'dimethoxytrityl)-β-D-ribofuranosyl)-2-methylthiopurin-6-yl]carbamoyl]-*O*-tert-butyldimethylsilyl-*L*threonine trimethylsilylethyl ester (**6b**)

Ref: V. Boudou, J. Langridge, A. V. Aerschot, C. Hendrix, A. Millar, P. Weiss, P. Herdewijn, Helv. Chim. Acta, **2000**, *83*, 152;

To stirred solution of 5'-DMTr, 2'-TBDMS-ms²t⁶A **5b**" (80 mg, 0.08 mmol) in freshly distilled CH₂Cl₂ (0.4 mL) under argon atmosphere anhydrous DIPEA was added (0.05 mL, 0.29 mmol). Then 2-cyanoethyl-*N*,*N*-diisopropyl chlorophosphoramidite (0.04 ml; 0.14 mmol) were added dropwise. The reaction was stirred for 3 h under argon atmosphere at room temperature. The reaction mixture was diluted with CH₂Cl₂ (5 mL) and washed with 5 % aq NaHCO₃ (2 x 5 mL) and H₂O (5 mL), then the organic layer was dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by the flash chromatography (silica gel, petroleum ether/acetone, 2:1 v/v) to obtain pure product **6b** as a white solid in 90 % yield (85 mg; 0.07 mmol). **TLC:** R_f = 0.53 (CHCl₃/acetone, 95:5 v/v).

³¹**P NMR**: (283 MHz, C₆H₆,) δ: 150.90, 149.49.

III. Spectroscopic data.

3.1 NMR and IR spectra of threonine derivatives.

Figure S1 ¹H NMR spectrum of *N*-(*tert*-butoxycarbonyl)-*O*-*tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (**1**)

¹**H NMR** (700 MHz, DMSO-*d*₆) δ: 6.19 (d, 1H, ³*J*=9.4 Hz, NH), 4.27 (dq, 1H, ³*J*=6.2 Hz, ³*J*=3.1 Hz, CH-β), 4.14 (td, 1H, ³*J*=10.7 Hz, ³*J*=6.5 Hz, O-CH TMSE), 4.09 (td, 1H, ³*J*=10.7 Hz, ³*J*=6.2 Hz, O-CH TMSE), 4.04 (dd, 1H, ³*J*=9.4 Hz, ³*J*=3.1 Hz, CH-α), 1.39 (s, 9H, C-(CH₃)₃ Boc), 1.11 (d, 3H, ³*J*=6.2 Hz, CH₃), 1.01-0.89 (m, 2H, Si-CH₂ TMSE), 0.82 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.03 (s, 12H, Si(CH₃)₃ TMSE; Si-CH₃ TBDMS), -0.01 (s, 3H, Si-CH₃ TBDMS).

Figure S2 ¹³C NMR spectrum of *N*-(*tert*-butoxycarbonyl)-*O*-*tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (1)

¹³**C NMR:** (176,03 MHz DMSO-d₆) δ: 170.62 (C=O), 155.52 (C=O), 78.52 (<u>C</u>-(CH₃)₃ Boc), 68.35 (CH-β), 62.66 (O-CH₂ TMSE), 59.42 (CH-α), 28.07 (C-(<u>C</u>H₃)₃ Boc), 25.53 (Si-C-<u>C</u>H₃)₃ TBDMS), 20.36 (CH₃), 17.55 (Si-<u>C</u>-CH₃)₃ TBDMS), 16.76 (Si-CH₂ TMSE), -1.58 (Si(CH₃)₃ TMSE), -4.44 (Si-CH₃ TBDMS), -5.42 (Si-CH₃ TBDMS).

Figure S3 ¹H NMR spectrum of 2-(S)-isocyane-3-(*O-tert*-butyldimethylsilyl)-3-hydroxybutanoic 2-trimethylsilylethyl ester (2)

¹**H NMR** (700 MHz, DMSO-*d*₆) δ: 4.34 (qd, 1H, ³*J*=6.2 Hz, ³*J*=1.7 Hz, CH-β), 4.24 (td, 1H, ³*J*=10.9 Hz, ³*J*=6.4 Hz, O-CH TMSE), 4.17 (td, 1H, ³*J*=11.1 Hz, ³*J*=5.9 Hz, O-CH TMSE), 4.03 (d, 1H, ³*J*=1.7 Hz, CH-α), 1.19 (d, 3H, ³*J*=6.3 Hz, CH₃), 1.07–0.94 (m, 2H, Si-CH₂ TMSE), 0.82 (s, 9H, Si-C-(CH₃)₃ TBDMS), 0.06 (s, 3H, Si-CH₃ TBDMS), 0.04 (s, 9H, Si-(CH₃)₃ TMSE), -0.01 (s, 3H, Si-CH₃ TBDMS).

Figure S4 ¹³C NMR spectrum of 2-(S)-isocyane-3-(*O-tert*-butyldimethylsilyl)-3-hydroxybutanoic 2-trimethylsilylethyl ester (2)

¹³**C NMR** (176,03 MHz DMSO-d₆) δ: 169.55 (C=O), 128.15 (N=C=O), 68.64 (CH-β), 64.16 (O-CH₂ TMSE), 63.82 (CH-α), 25.29 (Si-C(<u>C</u>H₃)₃ TBDMS), 20.81 (CH₃), 17.42 (Si-<u>C</u>(CH₃)₃ TBDMS), 16.82 (Si-CH₂ TMSE), -1.63 (Si(CH₃)₃ TMSE), -4.22 (Si-CH₃ TBDMS), -5.66 (Si-CH₃ TBDMS).

Figure S5 IR spectrum of *N*-(*tert*-butoxycarbonyl)-*O*-*tert*-butyldimethylsilyl-*L*-threonine trimethylsilylethyl ester (1)

Figure S6 IR spectrum of 2-(S)-isocyane-3-(*O-tert*-butyldimethylsilyl)-3-hydroxybutanoic 2-trimethylsilylethyl ester (2)

3.2 NMR spectra of adenosine derivatives

¹H NMR: (700 MHz, DMSO-d₆) δ: 8.35 (s, 1H, H-8), 8.17 (s, 1H, H-2), 7.36 (br s, 2H, NH₂), 6.20 (d, 1H, ³*J*=5.5 Hz, H-1'), 6.03 (t, 1H, ³*J*=5.7 Hz, H-2'), 5.63 (dd, 1H, ³*J*=5.8 Hz, ³*J*=5.1 Hz, H-3'), 4.41 (dd, 1H, ²*J*=11.9 Hz, ³*J*=3.8 Hz, H-5'), 4.38-4.34 (m, 1H, H-4'), 4.24 (dd, 1H, ²*J*=11.9 Hz, ³*J*=5.6 Hz, H-5"), 2.12 (s, 3H, CH₃-CO Ac), 2.04 (s, 3H, CH₃-CO Ac), 2.01 (s, 3H, CH₃-CO Ac).

Figure S8 ¹H NMR spectrum of 4a

Figure S9 ¹H NMR spectrum of 5a

Figure S10 ¹H NMR spectrum of 5a'

Figure S12 ³¹P NMR spectrum of 6a

Figure S13 ¹H NMR spectrum of **3b**

¹H NMR: (700 MHz, DMSO-d₆) δ: 8.18 (s, 1H, H-2), 7.43 (br s, 2H, NH₂), 6.15 (d, 1H, ³*J*=4.3 Hz, H-1'), 6.06 (dd, 1H, ³*J*=6.1 Hz, ³*J*=4.3 Hz, H-2'), 5.69 (t, 1H, ³*J*=6.1 Hz, ³*J*=6.

Figure S14 ¹H NMR spectrum of 4b

Figure S15 ¹H NMR spectrum of 5b

Figure S16 ¹H NMR spectrum of 5b'

Figure S17 ¹H NMR spectrum of 5b"

Figure S18 ³¹P NMR spectrum of 6b

¹**H NMR** (700 MHz, CDCl₃) δ: 8.33 (s, 1H H-8), 7.82 (s, 1H, H-2), 5.91 (br s, 1H, H-1'), 5.56 (br s, 2H, NH₂), 4.63 (br d, 1H, ³*J*=4.7 Hz, H-2'), 4.55 (dd, 1H, ³*J*=9.7 Hz, ³*J*=4.7 Hz, H-3'), 4.48 (dd, 1H, ²*J*=9.3 Hz, ³*J*=5.2 Hz, H-5'), 4.22 (ddd, 1H, ³*J*=10.7 Hz, ³*J*=9.6 Hz, ³*J*=5.2 Hz, H-4'), 4.04 (dd, 1H, ³*J*=10.6 Hz, ²*J*=9.2 Hz, H-5"), 1.09 (s, 9H, Si-C(CH₃)₃ tBu₂Si), 1.05 (s, 9H, Si-C(CH₃)₃ tBu₂Si), 0.93 (s, 9H, Si-C(CH₃)₃ TBDMS), 0.16 (s, 3H, Si-CH₃ TBDMS), 0.15 (s, 3H, Si-CH₃ TBDMS).

Figure S20 ¹H NMR spectrum of **10**

Figure S21 ¹³C NMR spectrum of 10

Figure S23 ¹³C NMR spectrum of **11**

Figure S25 ¹³C NMR spectrum of **12**

3.3 HR-MS spectra of adenosine derivatives.

Figure S26 ESI HR-MS spectrum of 4a

Figure S27 ESI HR-MS spectrum of 4b

Figure S28 ESI HR-MS spectrum of 10

S36

Figure S29 ESI HR-MS spectrum of 11

Figure S30 ESI HR-MS spectrum of 12

