Synthesis of Substituted 3, 4-Dihydroquinazolinones via a Metal Free Leuckart-Wallach Type Reaction

 Hallberg, ${ }^{\text {a }}$ Suresh B. Waghmode ${ }^{\text {b }}$ and Luke R .Odella* ${ }^{*}$
${ }^{a}$ Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P. O. Box 574, SE-751 23 Uppsala, Sweden.E-mail: luke.odell@ilk.uu.se
${ }^{b}$ Department of Chemistry, Savitribai Phule Pune University (formerly Pune University), Ganeshkhind, Pune 411007.

Experimental section

General Details	$:$	S2
General Procedures	$:$	S3
Characterisation of compounds	$:$	S4 - S15
NMR Spectra	$:$	S16 - S52
References	$:$	S53

General Details

All reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Solvents used for extraction and silica gel chromatography (EtOAc, hexane, n-pentane, dichloromethane and methanol) were used without purification or removal of water. Yields are for isolated, homogenous and spectroscopically pure material, unless otherwise stated. Reaction progress was monitored using thin layer chromatography (0.25 mm E. Merck silica plates, 60F-254, visualized with 254 nm UV light). Silica gel chromatography was carried out using E. Merck silica gel (60 A pore size, particle size 40-63 $\mathrm{nm}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 100 MHz . The chemical shifts for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were referenced to TMS via residual solvent signals $\left({ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, \mathrm{CDCl} 3$ at $77.16 \mathrm{ppm} ;{ }^{1} \mathrm{H}$, DMSO- d_{6} at $2.45 \mathrm{ppm} ;{ }^{13} \mathrm{C}$, DMSO- d_{6} at 39.43 ppm$)$. Microwave reactions were performed in an Initiator single mode reactor producing controlled irradiation at 2450 MHz and the temperature was monitored using the built-in online IR sensor. LC/MS was performed on an instrument equipped with a CP-Sil 8 CB capillary column ($50 \times 3.0 \mathrm{~mm}$, particle size $2.6 \mu \mathrm{~m}$, pore size $100 \AA$) operating at an ionization potential of 70 eV using a $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ gradient $\left(0.05 \% \mathrm{HCO}_{2} \mathrm{H}\right)$. Accurate mass values were determined using an electrospray ionization source with a 7-T hybrid ion trap and a TOF detector or by chemical ionization using ammonia as carrier gas. Unless otherwise stated, all reactions were performed on a 0.28 mmol scale in sealed Pyrex microwavetransparent process vials designed for $0.5-2 \mathrm{~mL}$ reaction volumes.

Preparation of starting materials.

Compounds 1a-1g are known and were prepared from the corresponding amino alcohols following literature procedures. ${ }^{1,2}$

Procedure A (one pot-one step): A $0.5-2 \mathrm{~mL}$ Pyrex process vial was charged with aldehyde $\mathbf{1}$ ($50.0 \mathrm{mg}, 0.28 \mathrm{mmol}$), amine (1.5 equiv.) and $\mathrm{HCO}_{2} \mathrm{H}(1 \mathrm{~mL})$. The vial was sealed and subjected to microwave irradiation at $150^{\circ} \mathrm{C}$ for 30 min . After cooling to $30-40^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo and purified by silica gel chromatography.

Procedure B (one pot-two step): A $0.5-2 \mathrm{~mL}$ Pyrex process vial was charged with aldehyde $\mathbf{1}$ ($50.0 \mathrm{mg}, 0.28 \mathrm{mmol}$), amine (1.5 equiv.) and $\mathrm{AcOH}(1 \mathrm{~mL})$. The vial was sealed and subjected to microwave irradiation at $130^{\circ} \mathrm{C}$ (unless otherwise stated, temp. change) for 10 min (step 1). After cooling to $30-40^{\circ} \mathrm{C}, \mathrm{HCO}_{2} \mathrm{H}(1 \mathrm{~mL})$ was added through the septum with a syringe and the reaction mixture was heated at $150{ }^{\circ} \mathrm{C}$ (unless otherwise stated, temp. change) for further 30 min (step 2). The reaction mixture was concentrated in vacuo and purified by silica gel chromatography.

3-Benzyl-3,4-dihydroquinazolin-2(1H)-one ${ }^{3}$ (4a): Following procedure A. White solid (43 $\mathrm{mg}, 83 \%$). Following procedure A on 2 mmol scale, white solid ($410 \mathrm{mg}, 86 \%$). Eluted with $10 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}\left(\mathrm{R}_{f}=0.45\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.24$ $(\mathrm{m}, 5 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 153.7, 137.6, 137.5, 128.6, 127.9, 127.7, 127.3, 125.6, 121.1, 117.6, 113.4, 49.3, 47.5, 39.7. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 239.1184, found 239.1186 .

3-Benzyl-6-methoxy-3,4-dihydroquinazolin-2(1H)-one (4b): Following procedure A. Pale yellow solid ($70 \mathrm{mg}, 92 \%$). Eluted with 50% EtOAc in petroleum ether $\left(\mathrm{R}_{f}=0.25\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=2.5,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.1, 155.1, $154.8,136.8,130.4,128.8,128.2,128.0,127.7,118.5,114.8,113.9,111.2,55.8,50.6,48.4$. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 269.1290, found 269.1295.

3-Benzyl-8-methyl-3,4-dihydroquinazolin-2(1H)-one (4c): Following procedure A. White solid (44 mg, 72%). Eluted with 15% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.28\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, 2.25 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,136.7,135.1,129.5,128.8,128.0,127.5$, 123.3, 121.5, 121.4, 117.2, 50.4, 48.1, 16.6. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 253.1349, found $m / z 253.1341$.

3-Benzyl-6-fluoro-3,4-dihydroquinazolin-2(1H)-one (4d): Following procedure A. White solid (41 mg, 65%). Eluted with 10% EtOAc in n-pentane ($\mathrm{R}_{f}=0.35$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{ddd}, J=8.6,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{ddd}, J=$ 8.4, 8.0, $3.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.67(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7(\mathrm{~d}, J=$ $240.2 \mathrm{~Hz}), 154.5,136.4,133.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 128.7,128.0,127.6,118.7(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 114.9$
(d, $J=19.1 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 50.3$, 47.8. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+} m / z 257.1095$, found m / z 257.1090.

3-Benzyl-6-chloro-3,4-dihydroquinazolin-2(1H)-one (4e): Following procedure A. White solid ($65 \mathrm{mg}, 85 \%$). Eluted with $10 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}\left(\mathrm{R}_{f}=0.50\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ ($\mathrm{s}, 2 \mathrm{H}$), $4.30(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 153.4, 137.2, 136.7, 128.6, 127.7, 127.6, 127.3, 125.5, 124.6, 119.7, 114.9, 49.3, 47.1. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+$ $\mathrm{H}]^{+} m / z 273.0795$, found 273.0801 .

3-Benzyl-6-bromo-3,4-dihydroquinazolin-2(1H)-one (4f): Following procedure A. White solid ($75 \mathrm{mg}, 84 \%$). Eluted with $10 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}\left(\mathrm{R}_{f}=0.40\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}$, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 153.3,137.2,137.1,130.6,128.6,128.3,127.6,127.3$, 120.2, 115.4, 112.3, 49.3, 47.0. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 317.0289$, found 317.0301.

3-Benzyl-7-chloro-3,4-dihydroquinazolin-2(1H)-one (4g): Following procedure A. White solid ($37 \mathrm{mg}, 66 \%$). Eluted with 10% EtOAc in n-pentane ($\mathrm{R}_{f}=0.29$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.1,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 153.5,139.5,137.6,132.4,129.0,128.0,127.8,127.7,121.1,117.0,113.1,49.7,47.4$. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 273.0796, found m / z 273.0795.

3-Benzyl-7-(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (4h): Following procedure A. White solid ($39 \mathrm{mg}, 59 \%$). Eluted with 10% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.33\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz,) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9$, 137.3,
$136.2,130.8(\mathrm{q}, J=31.5 \mathrm{~Hz}), 128.8,128.1,127.8,126.2,123.3(\mathrm{q}, J=270.3 \mathrm{~Hz}), 121.1(\mathrm{q}, J$ $=1.2 \mathrm{~Hz}), 118.6(\mathrm{q}, J=3.9 \mathrm{~Hz}), 110.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 50.5,47.7 . \mathrm{MS}(\mathrm{ESI}):$ Calc'd $^{\prime}$ for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OF}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \mathrm{m} / \mathrm{z} 307.1062$, found $\mathrm{m} / \mathrm{z} 307.1058$.

1,3-Dibenzyl-3,4-dihydroquinazolin-2(1H)-one (4i): Following procedure A. Colorless oil ($52 \mathrm{mg}, 87 \%$). Eluted with 10% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.19\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.10(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.2,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (ddd, $J=7.4,7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.36$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,138.6,137.9,137.1,128.8,128.8,128.3,128.2$, 127.7, 127.0, 126.5, 125.7, 122.0, 119.8, 114.1, 51.7, 47.8, 47.0. MS (ESI): Calc'd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z 329.1654$, found $m / z 329.1647$.

3-(2-Methoxybenzyl)-3,4-dihydroquinazolin-2(1H)-one (4j): Following procedure A. White solid ($52 \mathrm{mg}, 70 \%$). Eluted with 20% EtOAc in n-pentane ($\mathrm{R}_{f}=0.13$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H})$, 6.91-6.77(m, 4H), $6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 157.6,154.8,137.1,128.9,128.5,128.0,125.4,124.7,121.7,120.7$, 117.7, 113.7, 110.3, 55.4, 48.5, 44.9. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 269.1290, found $m / z 269.1281$.

3-(2-Methylbenzyl)-3,4-dihydroquinazolin-2(1H)-one (4k): Following procedure A. White solid ($46 \mathrm{mg}, 65 \%$). Eluted with 15% EtOAc in n-pentane ($\mathrm{R}_{f}=0.18$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (s, 2H), $4.32(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,136.8,136.9,134.1$, 130.6, 128.1, 128.1, 127.5, 126.0, 125.5, 121.8, 117.3, 113.6, 48.2, 47.8, 19.1. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 253.1341, found m / z 253.1337.

3-(2-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one (41): Following procedure A. White solid ($53 \mathrm{mg}, 70 \%$). Eluted with 15% EtOAc in n-pentane ($\mathrm{R}_{f}=0.18$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H})$, 4.43 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,136.8,134.1,133.7,129.5,128.9,128.6$, 128.2, 127.1, 125.5, 121.9, 117.3, 113.8, 48.5, 47.7. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+} m / z$ 273.0795, found m / z 273.0801.

3-(4-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one (4m): Following procedure A. White solid ($60 \mathrm{mg}, 79 \%$). Eluted with 14% EtOAc in n-pentane ($\mathrm{R}_{f}=0.27$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{ddd}, J=7.8,7.8,1,6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5$, 136.7, 135.2, 133.3, 129.4, 128.8, 128.2, 125.5, 121.9, 117.2, 113.7, 49.8, 48.1. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 273.0795, found m / z 273.0802.

3-(Thiophen-2-ylmethyl)-3,4-dihydroquinazolin-2(1H)-one (4n): Following procedure A. White solid ($52 \mathrm{mg}, 76 \%$). Eluted with $2 \% \mathrm{MeOH}$ in $\mathrm{DCM}\left(\mathrm{R}_{f}=0.4\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.95$ (m, 2H), 6.90 (ddd, $J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,139.1,136.7,128.1,126.9,126.6$, 125.6, 125.5, 121.8, 117.4, 113.8, 47.9, 45.3. MS (ESI): Calc ${ }^{\prime}$ d for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 245.0749, found $m / z 245.0753$.

3-(Pyridin-3-ylmethyl)-3,4-dihydroquinazolin-2(1H)-one (4o): Following procedure A. White solid ($49 \mathrm{mg}, 74 \%$). Eluted with $2 \% \mathrm{MeOH}$ in $\mathrm{DCM}\left(\mathrm{R}_{f}=0.16\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, CDCl_{3}) $\delta 154.6,149.4,149.0,136.6,135.9,132.4,128.3,125.4,123.7,122.0$, 116.9, 113.9, 48.2, 48.0. MS (ESI): Calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 240.1137$, found m / z 240.1138.

3,4-Dihydroquinazolin-2(1H)-one ${ }^{4}$ (5a): Following procedure B. White solid ($36 \mathrm{mg}, 87 \%$). Eluted with 25% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.58\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.01(\mathrm{~s}$, $1 \mathrm{H}), 7.11(\mathrm{ddd}, J=7.9,7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{ddd}, J=7.4,7.41 .2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 155.0, 138.5, 128.0, 126.1, 121.3, 118.5, 113.9, 42.9. MS (ESI): Calc'd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z 149.0715$, found $m / z 149.0713$.

3-Methyl-3,4-dihydroquinazolin-2(1H)-one ${ }^{\mathbf{3}} \mathbf{(5 b) :}$ Following procedure B. $\mathrm{MeNH}_{2} 33$ wt \% in absolute ethanol (0.1 mL) used as amine source. White crystalline solid ($40 \mathrm{mg}, 88 \%$). Eluted with $2 \% \mathrm{MeOH}$ in $\mathrm{DCM}\left(\mathrm{R}_{f}=0.16\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14$ (s, 1 H), 7.08 (ddd, J $=7.6,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{ddd}, J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=$ $7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.7, 137.1, 128.1, 125.3, 121.7, 117.3, 113.8, 50.8, 34.5. MS (ESI): Calc'd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 163.0871, found $m / z 163.0865$.

3-Hexyl-3,4-dihydroquinazolin-2(1H)-one (5c): Following procedure B. White crystalline solid ($37 \mathrm{mg}, 80 \%$). Eluted with $20 \% \mathrm{EtOAc}$ in n-pentane $\left(\mathrm{R}_{f}=0.39\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=7.7,7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.4, 137.2, 128.1, 125.3, 121.6, 117.6, 113.5, 48.5, 47.1, 31.6, 26.9, 26.4, 22.5, 14.0. MS (ESI): Calc'd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]{ }^{+} m / z 233.1654$, found $m / z 233.1654$.

3-Allyl-3,4-dihydroquinazolin-2(1H)-one (5d): Following procedure B. White solid (47 mg, 90%). Eluted with $20 \% \mathrm{EtOAc}$ in n-pentane $\left(\mathrm{R}_{f}=0.21\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53$ (s, 1H), 7.12-7.06 (m, 1H), $6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{ddd}, J=7.5,7.50 .9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.0,10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H})$, $4.01(\mathrm{dt}, J=6.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3,136.9,132.7,128.1,125.5$, 121.8, 117.9, 117.6, 113.6, 49.4, 47.9. MS (ESI): Calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 189.1028, found $m / z 189.1022$.

3-Phenethyl-3,4-dihydroquinazolin-2(1H)-one (5e): Following procedure B. White solid (37 $\mathrm{mg}, 87 \%)$. Eluted with 15% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.4\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11$ (s, 1H), 7.28-7.11 (m, 5H), 7.07 (ddd, $J=7.9,7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.67$ (dd, $J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.4,139.2,137.1,129.0,128.7,128.3,126.5,125.6,122.0,117.7,113.6,49.5$, 49.4, 33.9. MS (ESI): Calc ${ }^{\prime}$ d for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z 253.1341$, found $m / z 253.1332$.

3-isoPropyl-3,4-dihydroquinazolin-2(1H)-on $e^{\mathbf{5}}$ (5f): Following procedure B. White solid (36 $\mathrm{mg}, 81 \%)$. Eluted with 20% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.41\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=7.6,7.6 .1 .4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=7.4$. $7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,137.2,128.1,125.4,121.6,117.9,113.4$, 44.6, 41.5, 19.1. MS (ESI): Calc ${ }^{\prime} d$ for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z 191.1178$, found m / z 191.1184.

3-Cyclopropyl-3,4-dihydroquinazolin-2(1H)-one ${ }^{\mathbf{3}} \mathbf{(5 g)}$: Following procedure B. White solid ($43 \mathrm{mg}, 92 \%$). Eluted with $50 \% \mathrm{EtOAc}$ in n-pentane $\left(\mathrm{R}_{f}=0.34\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{tt}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.79(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, CDCl_{3}) $\delta 156.1,136.8,128.1,125.3,121.8,118.6,113.5,49.5,29.3,7.5 . \mathrm{MS}$ (ESI): Calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 189.1029, found m / z 189.1028.

3-Cyclohexyl-3,4-dihydroquinazolin-2(1H)-one ${ }^{\mathbf{5}}$ (5h): Following procedure B. White solid ($30 \mathrm{mg}, 77 \%$). Eluted with $12 \% \mathrm{EtOAc}$ in n-pentane $\left(\mathrm{R}_{f}=0.34\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{ddd}, J=7.5$, $7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.23(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.52-$ $1.33(\mathrm{~m}, 4 \mathrm{H}), 1.12-0.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,137.1,128.0,125.4$, 121.6, 118.1, 113.3, 52.9, 42.8, 29.6, 25.7, 25.6. MS (ESI): Calc'd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ $m / z 231.1497$, found $m / z 231.1504$.

3-(2-Methoxyethyl)-3,4-dihydroquinazolin-2(1H)-one ${ }^{6}(\mathbf{5 i})$: Following procedure B. White solid ($52 \mathrm{mg}, 90 \%$). Eluted with 30% EtOAc in pentane $\left(\mathrm{R}_{f}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=7.5,7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{ddd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,137.1,128.2,125.6,122.0,118.1,113.6,71.7,59.1,50.5$, 47.4. MS (ESI): Calc'd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 207.1134, found 207.1134.

2-(2-Oxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl formate (5j): Following procedure B. Colorless oil ($50.1 \mathrm{mg}, 81 \%$). Eluted with 50% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.50\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}) 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{ddd}, J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,154.8,136.8,128.3$, 125.3, 122.0, 117.3, 113.9, 61.8, 50.0, 46.1. Calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 221.0926, found 221.0933 .

3-(2-Hydroxyethyl)-3,4-dihydroquinazolin-2(1H)-one (5k): Following procedure B with the following modifications. To the crude mixture after step 2 was added $\mathrm{EtOH}(1.5 \mathrm{~mL}), \mathrm{NaOAc}$
($229 \mathrm{mg}, 2.8 \mathrm{mmol}$) and 1 mL of water. The resulting reaction mixture was refluxed for 5 hours, cooled to room temperature and extracted with EtAOc (3 x 50 mL). The combined organic layers were dried with MgSO_{4}, concentrated in vacuo and purified by silica gel chromatography to afford a white solid ($40 \mathrm{mg}, 74 \%$). Eluted with $50 \% \mathrm{EtOAc}$ in petroleum ether $\left(\mathrm{R}_{f}=0.10\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.6,7.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{ddd}, J=7.4,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{q}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 156.2,136.7,128.5,125.6,122.3,117.6,114.0,61.5,50.9,50.4 . \mathrm{MS}$ (ESI): Calc'd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 193.0977, found 193.0977.
tert-Butyl (2-(2-oxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)carbamate (5l): Following procedure B with the following modifications. Step 2: Formic acid ($129 \mathrm{mg}, 2.8 \mathrm{mmol}, 10$ equiv.) was added and the reaction was heated at $100^{\circ} \mathrm{C}$ for 30 min . White solid ($35 \mathrm{mg}, 43 \%$). Eluted with 40% EtOAc in iso-hexane with 0.1% formic acid ($\mathrm{R}_{f}=0.40$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=7.5,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 158.5,156.7,138.4,129.1,126.5,123.1,119.2,114.6$, 80.1, 50.2, 47.9, 39.0, 28.7. MS (ESI): Calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 292.1661$, found 292.1664.

3-(4-Methoxyphenyl)-3,4-dihydroquinazolin-2(1H)-one ${ }^{7}(\mathbf{5 m})$: Following procedure B. White solid ($35 \mathrm{mg}, 49 \%$). Eluted with 25% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.31\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.9,154.1,136.8,135.0,128.4,126.9,125.4,122.1,118.2,114.4,113.6$, 55.5, 52.1. MS (ESI): Calc ${ }^{\prime} \mathrm{d}$ for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z 255.1134$, found $m / z 255.1124$.

Methyl (E)-(2-((benzylimino)methyl)phenyl)carbamate (7): To a solution of benzylamine $(120 \mathrm{mg}, 1.11 \mathrm{mmol})$ and aldehyde $\mathbf{1 a}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ in 1,2-dichloroethane (2 mL) was added sodium triacetoxyborohydride $(0.22 \mathrm{~g}, 1.11 \mathrm{mmol})$. The resulting mixture was stirred at rt under a N_{2} atmosphere for 2 h and quenched by the addition of aqueous saturated NaHCO_{3}. The product was extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed to afford the crude product. The residue was purified by silica gel column chromatography (Eluted with 10% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.68\right)$) to afford a white solid $(73 \mathrm{mg}, 48 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.38-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.98(\mathrm{ddd}, J=8.0$, 8.0, 1.0 Hz, 1H), $4.77(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,154.7$, 140.4, 138.8, 133.2, 131.6, 128.6, 127.6, 127.1, 121.4, 120.2, 118.0, 64.6, 52.1. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z 269.1290$, found $m / z 269.1302$.

Methyl (2-((benzylamino)methyl)phenyl)carbamate (8): The imine $7(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ was dissolved in methanol $(0.5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ under N_{2}. Sodium borohydride (8.3 mg , 0.22 mmol) was added, the ice bath was removed and the mixture was stirred for a further 2 hrs. The solvent was evaporated and the crude residue was taken up in sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous phase was extracted diluted with diethyl ether ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude product. The residue was purified by silica gel column chromatography (Eluted with 10% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.1\right)$ to afford the title compound as white solid $(30 \mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.02$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{ddd}, J=7.4,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.70$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,139.2,138.9,129.5,128.5,128.5,128.3,127.3$, 126.2, 122.4, 119.6, 52.9, 52.3, 52.0. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 271.1447, found $m / z 271.1436$.

Methyl N-[2-[[benzyl(formyl)amino]methyl]phenyl]carbamate 8a

Following procedure A starting from compound 8. White solid ($35 \mathrm{mg}, 63 \%$). Eluted with 5\% MeOH in $\mathrm{CHCl}_{3}\left(\mathrm{R}_{f}=0.65\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.95$ $(\mathrm{m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.7, 155.0, 137.8, 135.0, 131.6, 129.8, 129.3, 122.8, 121.0, 77.5, 52.5, 50.6, 42.4. MS (ESI): Calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 321.1210, found 321.1224.

3-(4-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one-4-d (9): Following procedure A using deuterated formic acid (1 mL). White solid ($61 \mathrm{mg}, 80 \%$). Eluted with 14% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.26\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92-6.81 (m, 2H), $6.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.2,136.6,135.2,133.4,129.4,128.8,128.3,125.6,122.0,117.2,113.6,49.8,47.7$ $(\mathrm{t}, J=21.0 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ESI}):$ Calc'd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{DClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 274.0842, found m / z 274.0857.

3-Benzyl-1-methyl-3,4-dihydroquinazolin-2(1H)-one (10a): Sodium hydride (60\% oil dispersion, $7 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added to a solution of 3-benzyl-3,4-dihydroquinazolin$2(1 H)$-one ($\mathbf{4 a}, 50 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{DMF}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction was stirred at rt for 1 h and methyl iodide $(75 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added. The reaction was stirred for 18 h , quenched with water and diluted with EtOAc. The aqueous layer was separated and extracted with ethyl acetate. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was purified by silica gel column chromatography eluting with $25 \% \mathrm{EtOAc}$ in n pentane $\left(\mathrm{R}_{f}=0.44\right)$. The title compound was obtained as colorless oil ($28 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}$, $2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,139.5,137.0,128.6$, 128.1, 128.0, 127.4, 125.4, 121.7, 119.8, 112.7, 51.4, 47.5, 30.5. MS (ESI): Calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 253.1341, found $m / z 253.1346$.

1,3-Dimethyl-3,4-dihydroquinazolin-2(1H)-one (10b): Synthesized as per 10a from 3-methyl-3,4-dihydroquinazolin- $2(1 \mathrm{H}$)-one $(\mathbf{5 b}, 50 \mathrm{mg}, 0.31 \mathrm{mmol})$. Purified by silica gel column chromatography eluting with $25 \% \mathrm{EtOAc}$ in n-pentane $\left(\mathrm{R}_{f}=0.35\right.$). Yellow oil (30 mg , $53 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{ddd}, J=8.2,8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H})$, $6.90(\mathrm{ddd}, J=7.4,7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.96$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,139.6,128.2,125.3,121.6,119.8,112.6,50.3$, 35.6, 30.2. MS (ESI): Calc'd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} m / z$ 177.1028, found m / z 177.1034.

6-Bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one ${ }^{8}$ (11): Following procedure B pale yellow solid ($35 \mathrm{mg}, 52 \%$). Eluted with 30% EtOAc in n-pentane $\left(\mathrm{R}_{f}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=2.0, \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,136.2,131.3,128.5$, 119.5, 115.5, 114.1, 50.5, 34.7. MS (ESI): Calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OBr}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}\right]^{+} \mathrm{m} / \mathrm{z}$ 282.0242, found 282.0247.

3-Methyl-2-oxo-N-(o-tolylsulfonyl)-1,2,3,4-tetrahydroquinazoline-6-carboxamide (13):

The carbonylation reaction was conducted using a two-chamber ex-situ CO generation setup. ${ }^{9}$ To the CO-releasing chamber (chamber A) was added $\operatorname{Mo}(\mathrm{CO})_{6}(137 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $1,4-$ dioxane $(2 \mathrm{~mL})$. To the reaction chamber (chamber B) was added compound $\mathbf{1 1}(50 \mathrm{mg}, 0.21$ mmol), ortho-toluenesulfonamide ($89 \mathrm{mg}, 0.52 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($72 \mathrm{mg}, 0.52 \mathrm{mmol}$) and 1,4-dioxane (2 mL). Both chambers were sealed with gas-tight caps and DBU ($126 \mathrm{mg}, 0.83 \mathrm{mmol}$) was added to chamber A. The reaction was heated under $80^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature and excess CO was removed by carefully puncturing the cap. The crude reaction mixture from Chamber B was concentrated in vacuo and purified by silica gel column chromatography eluting with $30 \% \mathrm{EtOAc}$ in n-pentane with 0.1% formic acid $\left(\mathrm{R}_{f}=0.33\right)$. White solid ($51 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.14$ (dd, $J=8.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}$, $1 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 166.3,155.0,142.5,138.3,138.2,134.2$, 133.0, 131.6, 129.6, 126.9, 126.7, 125.7, 118.2, 114.2, 50.9, 34.7, 20.3. MS (ESI): Calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} m / z 360.1018$, found 360.1022 .

NMR spectra of all compounds

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound 4e

Compound $4 f$

Compound 4g

䓞

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 41


```
|
```


Compound 4m

Compound 4n

ホั\% \% \%

Compound 40

Compound 5a

ion in

Compound 5b

Compound 5c

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Compound 5d

Compound 5e

Compound $5 f$

Compound 5g

Compound 5h

$\stackrel{\otimes}{6}$		7
$\stackrel{+}{1}$	$\stackrel{8}{0}$	$1{ }^{\circ}$

Compound 5i

Compound 5j

Compound 5k

Compound 51

Compound 5m

Compound 7

Compound 8

$\begin{array}{lllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
Compound 8a

$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & f(\mathrm{ppm})\end{array}$

Compound 9

0,00

Compound 10a

Compound 10b

Compound 11

Compound 13

Compound 4a. Isolated from the attempted cyclization of $\mathbf{8}$

References

1 M. Y. Stevens, K. Wieckowski, P. Wu, R. T. Sawant and L. R. Odell, Org. Biomol. Chem., 2015, 13, 2044-54.

2 R. T. Sawant, M. Y. Stevens and L. R. Odell, Eur J. Org. Chem., 2015, 7743-7755.
3 M. E. Camacho, M. Chayah, M. E. García, N. Fernández-Sáez, F. Arias, M. A. Gallo and M. D. Carrión, Arch. Pharm., 2016, 349, 638-650.

4 C. M. Grombein, Q. Hu, S. Rau, C. Zimmer and R. W. Hartmann, Eur. J. Med. Chem., 2015, 90, 788-796.

5 M. J. Kornet, J. Heterocycl. Chem., 1992, 29, 103-105.
6 R. Zhou, X. Qi and X.-F. Wu, ACS Comb. Sci., 2019, 21, 573-577.
7 D. Shi, G. Dou and Z.-Y. Li, J. Chem. Res., 2007, 2007, 545-547.
8 P. V. Fish, P. Filippakopoulos, G. Bish, P. E. Brennan, M. E. Bunnage, A. S. Cook, O. Federov, B. S. Gerstenberger, H. Jones, S. Knapp, B. Marsden, K. Nocka, D. R. Owen, M. Philpott, S. Picaud, M. J. Primiano, M. J. Ralph, N. Sciammetta and J. D. Trzupek, J. Med. Chem., 2012, 55, 9831-9837.

9 P. Nordeman, L. R. Odell and M. Larhed, J. Org. Chem., 2012, 77, 11393-11398.

