Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary information for

Synthesis of Substituted 3, 4-Dihydroquinazolinones via a Metal Free Leuckart-Wallach Type Reaction

Suvarna Bokale-Shivale,^a Mohammad A. Amin,^a Rajiv T. Sawant,^a Marc Y. Stevens,^a Lewend Turanli,^a Adam Hallberg,^a Suresh B. Waghmode^b and Luke R .Odell^{a*}

^aDepartment of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P. O. Box 574, SE-751 23 Uppsala, Sweden. E-mail: luke.odell@ilk.uu.se

^bDepartment of Chemistry, Savitribai Phule Pune University (formerly Pune University), Ganeshkhind, Pune 411 007.

Experimental section

General Details	:	S2
General Procedures	:	S3
Characterisation of compounds	:	S4 - S15
NMR Spectra	:	S16 – S52
References	:	\$53

General Details

All reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Solvents used for extraction and silica gel chromatography (EtOAc, hexane, *n*-pentane, dichloromethane and methanol) were used without purification or removal of water. Yields are for isolated, homogenous and spectroscopically pure material, unless otherwise stated. Reaction progress was monitored using thin layer chromatography (0.25 mm E. Merck silica plates, 60F-254, visualized with 254 nm UV light). Silica gel chromatography was carried out using E. Merck silica gel (60 Å pore size, particle size 40-63 nm). ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra at 100 MHz. The chemical shifts for ¹H NMR and ¹³C NMR were referenced to TMS via residual solvent signals (¹H, CDCl₃ at 7.26 ppm; ¹³C, CDCl3 at 77.16 ppm; ¹H, DMSO-*d*₆ at 2.45 ppm; ¹³C, DMSO-*d*₆ at 39.43 ppm). Microwave reactions were performed in an Initiator single mode reactor producing controlled irradiation at 2450 MHz and the temperature was monitored using the built-in online IR sensor. LC/MS was performed on an instrument equipped with a CP-Sil 8 CB capillary column (50 x 3.0 mm, particle size 2.6 µm, pore size 100 Å) operating at an ionization potential of 70 eV using a CH₃CN/H₂O gradient (0.05% HCO₂H). Accurate mass values were determined using an electrospray ionization source with a 7-T hybrid ion trap and a TOF detector or by chemical ionization using ammonia as carrier gas. Unless otherwise stated, all reactions were performed on a 0.28 mmol scale in sealed Pyrex microwavetransparent process vials designed for 0.5–2 mL reaction volumes.

General procedure for the synthesis of 3,4-dihydroquinazolinones.

Preparation of starting materials.

Compounds **1a–1g** are known and were prepared from the corresponding amino alcohols following literature procedures.^{1,2}

Procedure A (one pot-one step): A 0.5-2 mL Pyrex process vial was charged with aldehyde 1 (50.0 mg, 0.28 mmol), amine (1.5 equiv.) and HCO₂H (1 mL). The vial was sealed and subjected to microwave irradiation at 150 °C for 30 min. After cooling to 30–40 °C, the reaction mixture was concentrated *in vacuo* and purified by silica gel chromatography.

Procedure B (one pot-two step): A 0.5–2 mL Pyrex process vial was charged with aldehyde 1 (50.0 mg, 0.28 mmol), amine (1.5 equiv.) and AcOH (1 mL). The vial was sealed and subjected to microwave irradiation at 130 °C (unless otherwise stated, temp. change) for 10 min (step 1). After cooling to 30–40 °C, HCO₂H (1 mL) was added through the septum with a syringe and the reaction mixture was heated at 150 °C (unless otherwise stated, temp. change) for further 30 min (step 2). The reaction mixture was concentrated *in vacuo* and purified by silica gel chromatography.

*3-Benzyl-3,4-dihydroquinazolin-2(1H)-one*³ (**4a**): Following procedure A. White solid (43 mg, 83%). Following procedure A on 2 mmol scale, white solid (410 mg, 86%). Eluted with 10% MeOH in CHCl₃ (R_f = 0.45). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.31 (s, 1H), 7.39–7.24 (m, 5H), 7.16–7.08 (m, 1H), 7.06–6.98 (m, 1H), 6.87–6.76 (m, 2H), 4.54 (s, 2H), 4.30 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.7, 137.6, 137.5, 128.6, 127.9, 127.7, 127.3, 125.6, 121.1, 117.6, 113.4, 49.3, 47.5, 39.7. MS (ESI): Calc´d for C₁₅H₁₅N₂O [M + H]⁺ *m/z* 239.1184, found 239.1186.

3-Benzyl-6-methoxy-3,4-dihydroquinazolin-2(1H)-one (**4b**): Following procedure A. Pale yellow solid (70 mg, 92%). Eluted with 50% EtOAc in petroleum ether ($R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.37–7.28 (m, 5H), 6.74–6.65 (m, 2H), 6.50 (dd, J = 2.5, 0.8 Hz, 1H), 4.67 (s, 2H), 4.32 (s, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 155.1, 154.8, 136.8, 130.4, 128.8, 128.2, 128.0, 127.7, 118.5, 114.8, 113.9, 111.2, 55.8, 50.6, 48.4. MS (ESI): Calc´d for C₁₆H₁₇N₂O₂ [M + H]⁺ *m/z* 269.1290, found 269.1295.

3-Benzyl-8-methyl-3,4-dihydroquinazolin-2(1H)-one (4c): Following procedure A. White solid (44 mg, 72 %). Eluted with 15% EtOAc in *n*-pentane ($R_f = 0.28$). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.28 (m, 6H), 7.02–6.99 (m, 1H), 6.86–6.79 (m, 2H), 4.68 (s, 2H), 4.34 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 136.7, 135.1, 129.5, 128.8, 128.0, 127.5, 123.3, 121.5, 121.4, 117.2, 50.4, 48.1, 16.6. MS (ESI): Calc'd for C₁₆H₁₇N₂O [M + H]⁺ *m/z* 253.1349, found *m/z* 253.1341.

3-Benzyl-6-fluoro-3,4-dihydroquinazolin-2(1H)-one (4d): Following procedure A. White solid (41 mg, 65 %). Eluted with 10% EtOAc in *n*-pentane ($R_f = 0.35$). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.38–7.27 (m, 5H), 6.85 (ddd, J = 8.6, 2.8, 0.8 Hz, 1H), 6.68 (ddd, J = 8.4, 8.0, 3.7 Hz, 2H), 4.67 (s, 2H), 4.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, J = 240.2 Hz), 154.5, 136.4, 133.0 (d, J = 2.4 Hz), 128.7, 128.0, 127.6, 118.7 (d, J = 7.5 Hz), 114.9

(d, J = 19.1 Hz), 114.7 (d, J = 3.5 Hz), 112.3 (d, J = 24.5 Hz), 50.3, 47.8. MS (ESI): Calc'd for C₁₅H₁₄N₂OF [M + H]⁺ m/z 257.1095, found m/z 257.1090.

3-Benzyl-6-chloro-3,4-dihydroquinazolin-2(1H)-one (**4e**): Following procedure A. White solid (65 mg, 85%). Eluted with 10% MeOH in CHCl₃ ($R_f = 0.50$). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.46 (s, 1H), 7.41–7.22 (m, 5H), 7.21–7.09 (m, 2H), 6.80 (d, *J* = 8.4 Hz, 1H), 4.53 (s, 2H), 4.30 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 153.4, 137.2, 136.7, 128.6, 127.7, 127.6, 127.3, 125.5, 124.6, 119.7, 114.9, 49.3, 47.1. MS (ESI): Calc´d for C₁₅H₁₄N₂OCl [M + H]⁺ *m/z* 273.0795, found 273.0801.

3-Benzyl-6-bromo-3,4-dihydroquinazolin-2(1H)-one (**4f**): Following procedure A. White solid (75 mg, 84%). Eluted with 10% MeOH in CHCl₃ (R_{*f*} = 0.40). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.46 (s, 1H), 7.40–7.22 (m, 7H), 6.75 (d, *J* = 8.4 Hz, 1H), 4.53 (s, 2H), 4.31 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.3, 137.2, 137.1, 130.6, 128.6, 128.3, 127.6, 127.3, 120.2, 115.4, 112.3, 49.3, 47.0. MS (ESI): Calc´d for C₁₅H₁₄BrN₂O [M + H]⁺ *m/z* 317.0289, found 317.0301.

3-Benzyl-7-chloro-3,4-dihydroquinazolin-2(1H)-one (**4g**): Following procedure A. White solid (37 mg, 66%). Eluted with 10% EtOAc in *n*-pentane ($R_f = 0.29$). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.45 (s, 1H), 7.36–7.23 (m, 5H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.86 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.81 (d, *J* = 2.1 Hz, 1H), 4.51 (s, 2H), 4.28 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.5, 139.5, 137.6, 132.4, 129.0, 128.0, 127.8, 127.7, 121.1, 117.0, 113.1, 49.7, 47.4. MS (ESI): Calc´d for C₁₅H₁₄N₂OCl [M + H]⁺ *m/z* 273.0796, found *m/z* 273.0795.

3-Benzyl-7-(trifluoromethyl)-3,4-dihydroquinazolin-2(1H)-one (4h): Following procedure A. White solid (39 mg, 59 %). Eluted with 10% EtOAc in *n*-pentane (R_f = 0.33). ¹H NMR (400 MHz,) δ 8.02 (s, 1H), 7.40–7.27 (m, 5H), 7.15 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), 6.97 (s, 1H), 4.69 (s, 2H), 4.38 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 137.3, 136.2, 130.8 (q, J = 31.5 Hz), 128.8, 128.1, 127.8, 126.2, 123.3 (q, J = 270.3 Hz), 121.1 (q, J = 1.2 Hz), 118.6 (q, J = 3.9 Hz), 110.4 (q, J = 3.8 Hz), 50.5, 47.7. MS (ESI): Calc'd for C₁₆H₁₃N₂OF₃ ([M +H ⁺]) m/z 307.1062, found m/z 307.1058.

1,3-Dibenzyl-3,4-dihydroquinazolin-2(1H)-one (**4i**): Following procedure A. Colorless oil (52 mg, 87%). Eluted with 10% EtOAc in *n*-pentane ($R_f = 0.19$). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.10 (m, 10H), 7.08 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 6.96 (dd, J = 7.5, 1.5 Hz, 1H), 6.89 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.72 (dd, J = 8.2, 1.0 Hz, 1H), 5.19 (s, 2H), 4.74 (s, 2H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 138.6, 137.9, 137.1, 128.8, 128.8, 128.3, 128.2, 127.7, 127.0, 126.5, 125.7, 122.0, 119.8, 114.1, 51.7, 47.8, 47.0. MS (ESI): Calc´d for C₂₂H₂₁N₂O [M + H]⁺ *m/z* 329.1654, found *m/z* 329.1647.

3-(2-Methoxybenzyl)-3,4-dihydroquinazolin-2(1H)-one (**4**j): Following procedure A. White solid (52 mg, 70%). Eluted with 20% EtOAc in *n*-pentane ($R_f = 0.13$). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.26 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.20–7.16 (m, 1H), 7.09–7.02 (m, 2H), 6.91–6.77 (m, 4H), 6.65 (d, *J* = 8.5 Hz, 1H), 4.64 (s, 2H), 4.34 (s, 2H), 3.78 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 154.8, 137.1, 128.9, 128.5, 128.0, 125.4, 124.7, 121.7, 120.7, 117.7, 113.7, 110.3, 55.4, 48.5, 44.9. MS (ESI): Calc′d for C₁₆H₁₇N₂O₂ [M + H]⁺ *m*/*z* 269.1290, found *m*/*z* 269.1281.

3-(2-Methylbenzyl)-3,4-dihydroquinazolin-2(1H)-one (4k): Following procedure A. White solid (46 mg, 65%). Eluted with 15% EtOAc in *n*-pentane ($R_f = 0.18$). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.21–7.11 (m, 5H), 6.95–6.86 (m, 2H), 6.73 (d, J = 7.9 Hz, 1H), 4.71 (s, 2H), 4.32 (s, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 136.8, 136.9, 134.1, 130.6, 128.1, 128.1, 127.5, 126.0, 125.5, 121.8, 117.3, 113.6, 48.2, 47.8, 19.1. MS (ESI): Calc'd for C₁₆H₁₇N₂O [M + H] ⁺ *m/z* 253.1341, found *m/z* 253.1337.

3-(2-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one (4l): Following procedure A. White solid (53 mg, 70%). Eluted with 15% EtOAc in *n*-pentane ($R_f = 0.18$). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.43–7.37 (m, 2H), 7.25–7.19 (m, 2H), 7.16 (dd, *J* = 7.6, 1.8 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.91 (dd, *J* = 7.4, 0.8 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 4.83 (s, 2H), 4.43 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 136.8, 134.1, 133.7, 129.5, 128.9, 128.6, 128.2, 127.1, 125.5, 121.9, 117.3, 113.8, 48.5, 47.7. MS (ESI): Calc′d for C₁₅H₁₄ClN₂O [M + H]⁺ *m/z* 273.0795, found *m/z* 273.0801.

3-(4-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one (4m): Following procedure A. White solid (60 mg, 79%). Eluted with 14% EtOAc in *n*-pentane ($R_f = 0.27$). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.35–7.28 (m, 4H), 7.15 (ddd, J = 7.8, 7.8, 1,6 Hz, 1H), 6.99–6.88 (m, 2H), 6.73 (d, J = 7.9 Hz, 1H), 4.64 (s, 2H), 4.33 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 136.7, 135.2, 133.3, 129.4, 128.8, 128.2, 125.5, 121.9, 117.2, 113.7, 49.8, 48.1. MS (ESI): Calc'd for C₁₅H₁₄ClN₂O [M + H]⁺ *m/z* 273.0795, found *m/z* 273.0802.

3-(Thiophen-2-ylmethyl)-3,4-dihydroquinazolin-2(1H)-one (**4n**): Following procedure A. White solid (52 mg, 76%). Eluted with 2% MeOH in DCM ($R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.27–7.23 (m, 1H), 7.18–7.12 (m, 1H), 7.08–7.05 (m, 1H), 7.00–6.95 (m, 2H), 6.90 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.77 (dd, J = 7.9, 1.1 Hz, 1H), 4.82 (d, J = 0.8 Hz, 2H), 4.42 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 139.1, 136.7, 128.1, 126.9, 126.6, 125.6, 125.5, 121.8, 117.4, 113.8, 47.9, 45.3. MS (ESI): Calc´d for C₁₃H₁₃N₂OS [M + H]⁺ *m/z* 245.0749, found *m/z* 245.0753.

3-(Pyridin-3-ylmethyl)-3,4-dihydroquinazolin-2(1H)-one (40): Following procedure A. White solid (49 mg, 74%). Eluted with 2% MeOH in DCM ($R_f = 0.16$). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (br s, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.25 (dd, J = 7.6, 5.0 Hz, 1H), 7.11 (td, J = 8.0, 1.6 Hz, 1H), 6.94–6.82 (m, 3H), 6.62 (d, J = 7.9 Hz, 1H), 4.62 (s, 1H), 4.30 (s, 2H). ¹³C

NMR (101 MHz, CDCl₃) δ 154.6, 149.4, 149.0, 136.6, 135.9, 132.4, 128.3, 125.4, 123.7, 122.0, 116.9, 113.9, 48.2, 48.0. MS (ESI): Calc´d for C₁₄H₁₄N₃O [M + H]⁺ *m/z* 240.1137, found *m/z* 240.1138.

*3,4-Dihydroquinazolin-2(1H)-one*⁴ (**5a**): Following procedure B. White solid (36 mg, 87%). Eluted with 25% EtOAc in *n*-pentane (R_f = 0.58). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.01 (s, 1H), 7.11 (ddd, *J* = 7.9, 7.9, 1.3 Hz, 1H), 7.09–7.04 (m, 1H), 6.85 (ddd, *J* = 7.4, 7.4 1.2 Hz, 1H), 6.78–6.74 (m, 1H), 4.30 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.0, 138.5, 128.0, 126.1, 121.3, 118.5, 113.9, 42.9. MS (ESI): Calc´d for C₈H₉N₂O [M +H]⁺ *m/z* 149.0715, found *m/z* 149.0713.

*3-Methyl-3,4-dihydroquinazolin-2(1H)-one*³ (**5b**): Following procedure B. MeNH₂ 33 wt % in absolute ethanol (0.1 mL) used as amine source. White crystalline solid (40 mg, 88%). Eluted with 2% MeOH in DCM ($R_f = 0.16$). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.08 (ddd, *J* = 7.6, 7.6, 1.5 Hz, 1H), 6.97–6.91 (m, 1H), 6.84 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 1H), 6.68 (dd, *J* = 7.9, 1.1 Hz, 1H), 4.38 (s, 2H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 137.1, 128.1, 125.3, 121.7, 117.3, 113.8, 50.8, 34.5. MS (ESI): Calc´d for C₉H₁₁N₂O [M + H]⁺ *m*/*z* 163.0871, found *m*/*z* 163.0865.

3-Hexyl-3,4-dihydroquinazolin-2(1H)-one (5c): Following procedure B. White crystalline solid (37 mg, 80%). Eluted with 20% EtOAc in *n*-pentane ($R_f = 0.39$). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.15 (ddd, J = 7.7, 7.7, 1.4 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.91 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 4.44 (s, 2H), 3.49–3.37 (m, 2H), 1.62 (quin, J = 7.3 Hz, 2H), 1.40–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 137.2, 128.1, 125.3, 121.6, 117.6, 113.5, 48.5, 47.1, 31.6, 26.9, 26.4, 22.5, 14.0. MS (ESI): Calc´d for C₁₄H₂₁N₂O [M + H] ⁺m/z 233.1654, found *m/z* 233.1654.

S8

3-Allyl-3,4-dihydroquinazolin-2(1H)-one (**5d**): Following procedure B. White solid (47 mg, 90%). Eluted with 20% EtOAc in *n*-pentane (R_f = 0.21). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.12–7.06 (m, 1H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.86 (ddd, *J* = 7.5, 7.5 0.9 Hz, 1H), 6.64 (d, *J* = 7.9 Hz, 1H), 5.77 (ddt, *J* = 17.0, 10.1, 6.0 Hz, 1H), 5.25–5.15 (m, 2H), 4.33 (s, 2H), 4.01 (dt, *J* = 6.0, 1.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 136.9, 132.7, 128.1, 125.5, 121.8, 117.9, 117.6, 113.6, 49.4, 47.9. MS (ESI): Calc′d for C₁₁H₁₃N₂O [M + H]⁺ *m*/z 189.1028, found *m*/z 189.1022.

3-Phenethyl-3,4-dihydroquinazolin-2(1H)-one (5e): Following procedure B. White solid (37 mg, 87%). Eluted with 15% EtOAc in *n*-pentane (R_f = 0.4). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.28–7.11 (m, 5H), 7.07 (ddd, *J* = 7.9, 7.1, 1.8 Hz, 1H), 6.90–6.77 (m, 2H), 6.67 (dd, *J* = 7.9, 1.0 Hz, 1H), 4.27 (s, 2H), 3.65–3.55 (m, 2H), 2.93–2.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 139.2, 137.1, 129.0, 128.7, 128.3, 126.5, 125.6, 122.0, 117.7, 113.6, 49.5, 49.4, 33.9. MS (ESI): Calc´d for C₁₆H₁₇N₂O [M + H]⁺ *m/z* 253.1341, found *m/z* 253.1332.

*3-isoPropyl-3,4-dihydroquinazolin-2(1H)-one*⁵ (**5f**): Following procedure B. White solid (36 mg, 81%). Eluted with 20% EtOAc in *n*-pentane (R_f = 0.41). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.15 (ddd, *J* = 7.6, 7.6. 1.4 Hz, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.92 (ddd, *J* = 7.4. 7.4, 1.1 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 4.81 (hept, *J* = 6.8 Hz, 1H), 4.31 (s, 2H), 1.22 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 137.2, 128.1, 125.4, 121.6, 117.9, 113.4, 44.6, 41.5, 19.1. MS (ESI): Calc´d for C₁₁H₁₅N₂O [M + H]⁺ *m/z* 191.1178, found *m/z* 191.1184.

*3-Cyclopropyl-3,4-dihydroquinazolin-2(1H)-one*³ (**5**g): Following procedure B. White solid (43 mg, 92%). Eluted with 50% EtOAc in *n*-pentane ($R_f = 0.34$). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.20–7.12 (m, 2H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.92–6.90 (m, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 4.41 (s, 2H), 2.64 (tt, *J* = 7.0, 3.8 Hz, 1H), 0.98–0.79 (m, 2H), 0.79–0.65 (m, 2H). ¹³C

NMR (101 MHz, CDCl₃) δ 156.1, 136.8, 128.1, 125.3, 121.8, 118.6, 113.5, 49.5, 29.3, 7.5. MS (ESI): Calc´d for C₁₁H₁₃N₂O [M + H]⁺ *m/z* 189.1029, found *m/z* 189.1028.

*3-Cyclohexyl-3,4-dihydroquinazolin-2(1H)-one*⁵ (**5h**): Following procedure B. White solid (30 mg, 77%). Eluted with 12% EtOAc in *n*-pentane ($R_f = 0.34$). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.08 (dd, J = 7.7, 1.4 Hz, 1H), 6.97 (dd, J = 7.6, 1.4 Hz, 1H), 6.85 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.64 (dd, J = 7.9, 1.1 Hz, 1H), 4.35–4.23 (m, 3H), 1.81–1.65 (m, 5H), 1.52–1.33 (m, 4H), 1.12–0.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 137.1, 128.0, 125.4, 121.6, 118.1, 113.3, 52.9, 42.8, 29.6, 25.7, 25.6. MS (ESI): Calc´d for C₁₄H₁₉N₂O [M + H]⁺ *m/z* 231.1497, found *m/z* 231.1504.

3-(2-Methoxyethyl)-3,4-dihydroquinazolin-2(1H)-one⁶ (5i): Following procedure B. White solid (52 mg, 90%). Eluted with 30% EtOAc in pentane ($R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (br s, 1H), 7.18–7.10 (m, 1H), 7.05–6.98 (m, 1H), 6.92 (ddd, J = 7.5, 7.5, 1.0Hz, 1H), 6.68 (ddd, J = 7.9, 1.4 Hz, 1H), 4.58 (s, 2H), 3.67–3.59 (m, 4H), 3.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 137.1, 128.2, 125.6, 122.0, 118.1, 113.6, 71.7, 59.1, 50.5, 47.4. MS (ESI): Calc'd for C₁₁H₁₅N₂O₂ [M + H]⁺ m/z 207.1134, found 207.1134.

2-(2-Oxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl formate (5j): Following procedure B. Colorless oil (50.1 mg, 81%). Eluted with 50% EtOAc in *n*-pentane (R_f = 0.50). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.01 (s, 1H) 7.13–7.06 (m, 1H), 6.95 (dd, *J* = 7.6, 1.4 Hz, 1H), 6.86 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 1H), 6.68 (dd, *J* = 8.0, 1.0 Hz, 1H), 4.50 (s, 2H), 4.36 (t, *J* = 5.4 Hz, 2H), 3.68 (t, *J* = 5.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 154.8, 136.8, 128.3, 125.3, 122.0, 117.3, 113.9, 61.8, 50.0, 46.1. Calc'd for C₁₁H₁₃N₂O₃ [M + H]⁺ *m/z* 221.0926, found 221.0933.

3-(2-Hydroxyethyl)-3,4-dihydroquinazolin-2(1H)-one (5k): Following procedure B with the following modifications. To the crude mixture after step 2 was added EtOH (1.5 mL), NaOAc

(229 mg, 2.8 mmol) and 1 mL of water. The resulting reaction mixture was refluxed for 5 hours, cooled to room temperature and extracted with EtAOc (3 x 50 mL). The combined organic layers were dried with MgSO₄, concentrated *in vacuo* and purified by silica gel chromatography to afford a white solid (40 mg, 74%). Eluted with 50% EtOAc in petroleum ether ($R_f = 0.10$). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.15 (dd, J = 7.6, 7.6, 1.5 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.93 (ddd, J = 7.4, 7.4, 1.1 Hz, 1H), 6.72 (dd, J = 8.0, 1.1 Hz, 1H), 4.55 (s, 2H), 3.87 (q, J = 4.5 Hz, 2H), 3.61 (t, J = 4.5 Hz, 2H), 3.40 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 136.7, 128.5, 125.6, 122.3, 117.6, 114.0, 61.5, 50.9, 50.4. MS (ESI): Calc´d for C₁₀H₁₃N₂O₂ [M + H]⁺ *m/z* 193.0977, found 193.0977.

tert-Butyl (2-(2-oxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)carbamate (51): Following procedure B with the following modifications. Step 2: Formic acid (129 mg, 2.8 mmol, 10 equiv.) was added and the reaction was heated at 100 °C for 30 min. White solid (35 mg, 43%). Eluted with 40% EtOAc in iso-hexane with 0.1% formic acid (R_f = 0.40). ¹H NMR (400 MHz, CD₃OD) δ 7.17–7.09 (m, 1H), 7.09–7.03 (m, 1H), 6.92 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 1H), 6.76 (dd, *J* = 7.8, 1.1 Hz, 1H), 4.55 (s, 2H), 3.48 (t, *J* = 6.2 Hz, 2H), 3.31–3.27 (m, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CD₃OD) δ 158.5, 156.7, 138.4, 129.1, 126.5, 123.1, 119.2, 114.6, 80.1, 50.2, 47.9, 39.0, 28.7. MS (ESI): Calc´d for C₁₅H₂₂N₃O₃ [M + H]⁺ *m/z* 292.1661, found 292.1664.

3-(4-Methoxyphenyl)-3,4-dihydroquinazolin-2(1H)-one⁷ (5m): Following procedure B. White solid (35 mg, 49%). Eluted with 25% EtOAc in *n*-pentane ($R_f = 0.31$). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.25–7.17 (m, 2H), 7.14 (dd, J = 7.7, 1.4 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.94–6.84 (m, 3H), 6.67 (d, J = 7.9 Hz, 1H), 4.72 (s, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 154.1, 136.8, 135.0, 128.4, 126.9, 125.4, 122.1, 118.2, 114.4, 113.6, 55.5, 52.1. MS (ESI): Calc´d for C₁₅H₁₅N₂O₂ [M + H]⁺ *m/z* 255.1134, found *m/z* 255.1124. *Methyl (E)-(2-((benzylimino)methyl)phenyl)carbamate* (7): To a solution of benzylamine (120 mg, 1.11 mmol) and aldehyde **1a** (100 mg, 0.55 mmol) in 1,2-dichloroethane (2 mL) was added sodium triacetoxyborohydride (0.22 g, 1.11 mmol). The resulting mixture was stirred at rt under a N₂ atmosphere for 2 h and quenched by the addition of aqueous saturated NaHCO₃. The product was extracted with EtOAc, dried (MgSO₄), and the solvent removed to afford the crude product. The residue was purified by silica gel column chromatography (Eluted with 10% EtOAc in *n*-pentane (R_f = 0.68)) to afford a white solid (73 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 12.23 (br s, 1H), 8.38–8.32 (m, 1H), 7.37–7.19 (m, 8H), 6.98 (ddd, *J* = 8.0, 8.0, 1.0 Hz, 1H), 4.77 (s, 2H), 3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 154.7, 140.4, 138.8, 133.2, 131.6, 128.6, 127.6, 127.1, 121.4, 120.2, 118.0, 64.6, 52.1. MS (ESI): Calc´d for C₁₆H₁₇N₂O₂ [M + H]⁺ *m/z* 269.1290, found *m/z* 269.1302.

Methyl (2-((*benzylamino*)*methyl*)*phenyl*)*carbamate* (8): The imine 7 (50 mg, 0.18 mmol) was dissolved in methanol (0.5 mL) and cooled to 0 °C under N₂. Sodium borohydride (8.3 mg, 0.22 mmol) was added, the ice bath was removed and the mixture was stirred for a further 2 hrs. The solvent was evaporated and the crude residue was taken up in sat. NaHCO₃ (20 mL). The aqueous phase was extracted diluted with diethyl ether (3 x 20 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo* to afford the crude product. The residue was purified by silica gel column chromatography (Eluted with 10% EtOAc in *n*-pentane (R_f = 0.1) to afford the title compound as white solid (30 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 9.97 (br s, 1H), 7.93 (d, *J* = 7.4 Hz, 1H), 7.32–7.17 (m, 6H), 7.02 (dd, *J* = 7.5, 1.8 Hz, 1H), 6.89 (ddd, *J* = 7.4, 7.4, 1.1 Hz, 1H), 3.78 (s, 2H), 3.72 (s, 2H), 3.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 139.2, 138.9, 129.5, 128.5, 128.3, 127.3, 126.2, 122.4, 119.6, 52.9, 52.3, 52.0. MS (ESI): Calc´d for C₁₆H₁₉N₂O₂ [M + H]⁺ *m/z* 271.1447, found *m/z* 271.1436.

Methyl N-[2-[[benzyl(formyl)amino]methyl]phenyl]carbamate 8a

Following procedure A starting from compound **8**. White solid (35 mg, 63%). Eluted with 5% MeOH in CHCl₃ (R_f = 0.65). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.30 (s, 1H), 8.13 (d, J = 8.3 Hz, 1H), 7.45–7.32 (m, 4H), 7.27 (d, J = 1.7 Hz, 1H), 7.26–7.24 (m, 1H), 7.05–6.95 (m, 2H), 4.35 (d, J = 6.5 Hz, 4H), 3.81 (s, 3H) ; ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 155.0, 137.8, 135.0, 131.6, 129.8, 129.3, 122.8, 121.0, 77.5, 52.5, 50.6, 42.4. MS (ESI): Calc'd for C₁₇H₁₈N₂O₃ [M + Na]⁺ *m/z* 321.1210, found 321.1224.

3-(4-Chlorobenzyl)-3,4-dihydroquinazolin-2(1H)-one-4-d (9): Following procedure A using deuterated formic acid (1 mL). White solid (61 mg, 80%). Eluted with 14% EtOAc in *n*-pentane ($R_f = 0.26$). ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.21 (m, 4H), 7.09 (dd, J = 7.6, 1.7 Hz, 1H), 6.92–6.81 (m, 2H), 6.63 (d, J = 7.9 Hz, 1H), 4.56 (s, 2H), 4.25 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 136.6, 135.2, 133.4, 129.4, 128.8, 128.3, 125.6, 122.0, 117.2, 113.6, 49.8, 47.7 (t, J = 21.0 Hz). MS (ESI): Calc´d for C₁₅H₁₃DClN₂O [M + H]⁺ *m/z* 274.0842, found *m/z* 274.0857.

3-Benzyl-1-methyl-3,4-dihydroquinazolin-2(1H)-one (**10a**): Sodium hydride (60% oil dispersion, 7 mg, 0.25 mmol) was added to a solution of 3-benzyl-3,4-dihydroquinazolin-2(1*H*)-one (**4a**, 50 mg, 0.21 mmol) in DMF (1 mL) at 0°C under nitrogen. The reaction was stirred at rt for 1 h and methyl iodide (75 mg, 0.53 mmol) was added. The reaction was stirred for 18 h, quenched with water and diluted with EtOAc. The aqueous layer was separated and extracted with ethyl acetate. The organic layer was dried (MgSO₄), filtered and evaporated. The residue was purified by silica gel column chromatography eluting with 25% EtOAc in *n*-pentane (R_f = 0.44). The title compound was obtained as colorless oil (28 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.14 (m, 6H), 6.90–6.86 (m, 2H), 6.80 (d, *J* = 8.4 Hz, 1H), 4.60 (s, 2H), 4.19 (s,2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 139.5, 137.0, 128.6, 128.1, 128.0, 127.4, 125.4, 121.7, 119.8, 112.7, 51.4, 47.5, 30.5. MS (ESI): Calc'd for C₁₆H₁₇N₂O [M + H]⁺ *m/z* 253.1341, found *m/z* 253.1346.

1,3-Dimethyl-3,4-dihydroquinazolin-2(1H)-one (10b): Synthesized as per 10a from 3methyl-3,4-dihydroquinazolin-2(1*H*)-one (**5b**, 50 mg, 0.31 mmol). Purified by silica gel column chromatography eluting with 25% EtOAc in *n*-pentane ($R_f = 0.35$). Yellow oil (30 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (ddd, J = 8.2, 8.2, 1.6 Hz, 1H), 7.00–6.95 (m, 1H), 6.90 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 139.6, 128.2, 125.3, 121.6, 119.8, 112.6, 50.3, 35.6, 30.2. MS (ESI): Calc'd for C₁₀H₁₃N₂O [M + H]⁺ *m/z* 177.1028, found *m/z* 177.1034.

*6-Bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one*⁸ (11): Following procedure B pale yellow solid (35 mg, 52%). Eluted with 30% EtOAc in *n*-pentane ($R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.30–7.23 (m, 1H), 7.16 (dd, J = 2.0, Hz, 1H), 6.61 (d, J = 8.4 Hz, 1H), 4.42 (s, 2H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 136.2, 131.3, 128.5, 119.5, 115.5, 114.1, 50.5, 34.7. MS (ESI): Calc´d for C₁₁H₁₃N₃OBr [M +CH₃CN+ H]⁺ *m/z* 282.0242, found 282.0247.

3-Methyl-2-oxo-N-(o-tolylsulfonyl)-1,2,3,4-tetrahydroquinazoline-6-carboxamide (13):

The carbonylation reaction was conducted using a two-chamber ex-situ CO generation setup.⁹ To the CO-releasing chamber (chamber A) was added Mo(CO)₆ (137 mg, 0.52 mmol) and 1,4-dioxane (2 mL). To the reaction chamber (chamber B) was added compound **11** (50 mg, 0.21 mmol), *ortho*-toluenesulfonamide (89 mg, 0.52 mmol), Pd(PPh₃)₄ (11 mg, 0.01 mmol), K₂CO₃ (72 mg, 0.52 mmol) and 1,4-dioxane (2 mL). Both chambers were sealed with gas-tight caps and DBU (126 mg, 0.83 mmol) was added to chamber A. The reaction was heated under 80 °C for 2 h, cooled to room temperature and excess CO was removed by carefully puncturing the cap. The crude reaction mixture from Chamber B was concentrated *in vacuo* and purified by silica gel column chromatography eluting with 30% EtOAc in *n*-pentane with 0.1% formic acid (R_f = 0.33). White solid (51 mg, 69%). ¹H NMR (400 MHz, CD₃OD) δ 8.14 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.68 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (d, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 (dd,

7.40–7.34 (m, 1H), 7.30 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 4.48 (s, 2H), 2.97 (s, 1H), 2.66 (s, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 166.3, 155.0, 142.5, 138.3, 138.2, 134.2, 133.0, 131.6, 129.6, 126.9, 126.7, 125.7, 118.2, 114.2, 50.9, 34.7, 20.3. MS (ESI): Calc'd for C₁₇H₁₈N₃O₄S [M + H]⁺ *m/z* 360.1018, found 360.1022.

NMR spectra of all compounds

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound 4e

Compound 4f

Compound 4g

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 4l

Compound 4m

Compound 4n

Compound 4o

Compound 5a

Compound 5b

Compound 5c

Compound 5d

Compound 5e

Compound 5f

Compound 5g

Compound 5h

Compound 5i

Compound 5j

Compound 5k

Compound 51

Compound 5m

Compound 7

Compound 8

Compound 8a

Compound 9

Compound 10a

Compound 10b

Compound 11

Compound 13

Compound 4a. Isolated from the attempted cyclization of 8

References

- M. Y. Stevens, K. Wieckowski, P. Wu, R. T. Sawant and L. R. Odell, *Org. Biomol. Chem.*, 2015, **13**, 2044–54.
- 2 R. T. Sawant, M. Y. Stevens and L. R. Odell, Eur J. Org. Chem., 2015, 7743-7755.
- 3 M. E. Camacho, M. Chayah, M. E. García, N. Fernández-Sáez, F. Arias, M. A. Gallo and M. D. Carrión, Arch. Pharm., 2016, 349, 638–650.
- 4 C. M. Grombein, Q. Hu, S. Rau, C. Zimmer and R. W. Hartmann, *Eur. J. Med. Chem.*, 2015, **90**, 788–796.
- 5 M. J. Kornet, J. Heterocycl. Chem., 1992, 29, 103-105.
- 6 R. Zhou, X. Qi and X.-F. Wu, ACS Comb. Sci., 2019, 21, 573–577.
- 7 D. Shi, G. Dou and Z.-Y. Li, J. Chem. Res., 2007, 2007, 545–547.
- 8 P. V. Fish, P. Filippakopoulos, G. Bish, P. E. Brennan, M. E. Bunnage, A. S. Cook, O. Federov, B. S. Gerstenberger, H. Jones, S. Knapp, B. Marsden, K. Nocka, D. R. Owen, M. Philpott, S. Picaud, M. J. Primiano, M. J. Ralph, N. Sciammetta and J. D. Trzupek, *J. Med. Chem.*, 2012, 55, 9831–9837.
- 9 P. Nordeman, L. R. Odell and M. Larhed, J. Org. Chem., 2012, 77, 11393–11398.