Electronic Supplementary Information (ESI)

Building with graphene oxide: effect of graphite nature and oxidation methods on the graphene assembly

Ji Hoon Kim,^a Gyu Hyeon Shim,^a Thi To Nguyen Vo,^a Boyeon Kweon,^a Koung Moon Kim^a and Ho Seon Ahn,^{*a}

^aDepartment of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea.

*Please address all correspondence to

Associate Professor, Ho Seon Ahn Department of Mechanical Engineering Incheon National University Incheon, 22012, Republic of Korea **E-mail :** <u>hsahn@inu.ac.kr</u>

Fig. S1. Digital images of GO powders. Three different oxidation methods (IGO, HGO, and HGO+, respectively) are applied to graphite sources; (a) SA325P, (b) AA325P, (c) AA325F, and (d) SA100F.

Case	Graphite supplier	Graphite size (mesh, size; um)	Graphite type	Oxidation
SA325P-HGO	Sigma Aldrich (SA)	325 (45 um)	Synthetic, powder	HGO
SA325P-HGO+	Code: 496596			HGO+
SA325P-IGO	≥99.99%			IGO
AA325P-HGO	Alfa aesar (AA)	325 (45 um)	Synthetic, powder	HGO
AA325P-HGO+	Code: 10129			HGO+
AA325P-IGO	99%			IGO
AA325F-HGO	Alfa aesar (AA)	325 (45 um)	Natural, Flake	HGO
AA325F-HGO+	Code: 43209			HGO+
AA325F-IGO	99.8%			IGO
SA100F-HGO	Sigma Aldrich (SA)	100 (150 um)	Natural, Flake	HGO
SA100F-HGO+	Code: 808091			HGO+
SA100F-IGO	99%			IGO

Table S1. Digital images of GO powders. Three different oxidation methods (IGO, HGO, and HGO+, respectively) areapplied to graphite sources; (a) SA325P, (b) AA325P, (c) AA325F, and (d) SA100F.

Fig. S2. SEM image of graphite source (a-d) and GO by different oxidation method. (1-2) Graphite with different magnification of x500 and x20,000. (3-5) Low magnification SEM image (x500) of GO from HGO, HGO+, and IGO, respectively.

Matorial	Nama	Crystallite (Crystallite (Å)				
	Name	d_{001}	d_{002}	d_{101}	d_{200}		
Graphite	SA325P	-	3.375	2.135	2.039		
	SA100F	-	3.387	2.089	2.019		
	AA325P	-	3.375	2.133	2.047		
	AA325F	-	3.362	2.135	2.036		
GO	SA325P HGO	7.968	-	2.141	-		
	SA325P HGO+	8.114	-	2.141	-		
	SA325P IGO	7.968	-	2.141	-		
	AA325P HGO	8.188	-	2.141	-		
	AA325P HGO+	8.422	-	2.141	-		
	AA325P IGO	7.561	-	2.141	-		
	AA325F HGO	7.897	-	2.141	-		
	AA325F HGO+	7.759	-	2.141	-		
	AA325F IGO	8.040	-	2.141	-		
	SA100F HGO	7.692	-	2.131	-		
	SA100F HGO+	8.754	-	2.140	-		
	SA100F IGO	7.625	-	2.121	-		

Table S2. Summaries of d space	cing calculated by applying	Bragg's law from the XRD	patterns (wavelength = 1.5412 Å)

		Graphite					
Graphite	Oxidation	size	С	0	S	C/O ratio	Ref.
		(µm)					
SA325P	HGO	45	61.56	37.06	1.38	1.66	This work
	HGO+	45	57.69	40.67	1.63	1.42	This work
	IGO	45	56.78	41.02	2.20	1.38	This work
AA325P	HGO	45	61.70	36.95	1.35	1.67	This work
	HGO+	45	59.52	39.23	1.25	1.52	This work
	IGO	45	59.88	39.27	0.85	1.52	This work
AA325F	HGO	45	60.94	37.50	1.57	1.63	This work
	HGO+	45	61.65	37.53	0.82	1.64	This work
	IGO	45	59.88	38.93	1.19	1.54	This work
SA100F	HGO	150	66.53	32.46	1.01	2.05	This work
	HGO+	150	63.62	35.27	1.12	1.80	This work
	IGO	150	62.21	35.5	2.29	1.75	This work
SP-1	Hummers	30	-	-	-	2.7	[1]
	Hummers	30	70	30	-	2.33	
	(HGTO)						
-	Hummers (MGTO)	30	69.47	30.53	-	2.28	[2]
-	Hummers (MGTO3)	30	69.27	30.73	-	2.25	
Expanded	Hummers	5	_		_	1.39	
graphite	(EGO)	5				1.55	
Flake graphite	Hummers (FGO)	5	-	-	-	2.03	[3]
Mycroscrystalline	Hummers	5	_	_	_	2 07	
graphite	(MGO)	J	-	-	-	2.07	
NFG-100	Hummers	150	-	-	-	2.70	[4]
NFG-325	Hummers	45	-	-	-	2.35	[4]

Table S3. Chemical composition of graphite oxide via XPS atomic concentration (at%), and comparision of C/O ratio with other references.

NFG-2000	Hummers	6.5	-	-	-	1.67	
	Staudenmaier (GO-ST)	20	-	-	-	2.47	
-	Hofmann (GO-HO)	20	-	-	-	2.71	[5]
-	Modified Hummers (GO-HU)	20	-	-	-	2.05	
-	Tour (GO-TO)	20	-	-	-	1.95	

Graphite	Oxidation	sp² (%)	sp ³ (%)	C-O (%)	C=O (%)	O-C=O (%)	sp²/(sp²+sp³) (%)
SA325	HGO	14.30	25.78	48.48	8.90	2.54	35.67
	HGO+	13.90	17.68	57.94	7.46	3.02	44.01
	IGO	19.47	19.24	50.54	6.51	4.25	50.30
AA325P	HGO	13.54	23.80	52.32	8.52	1.83	36.26
	HGO+	15.46	18.50	56.54	7.75	1.75	45.52
	IGO	18.80	16.92	51.81	9.80	2.67	52.62
AA325F	HGO	14.62	30.76	44.54	7.84	2.23	32.22
	HGO+	14.04	18.79	53.28	10.53	3.36	42.76
	IGO	19.30	16.94	52.66	8.17	2.93	53.25
SA100F	HGO	15.64	32.40	42.05	7.50	2.41	32.56
	HGO+	15.41	24.44	49.30	7.68	3.16	38.67
	IGO	18.02	27.77	45.67	6.47	2.08	39.35

 Table S4. The relative amount of carbon chemical bonds calculated from the deconvoluted C1s XPS spectra.

Fig. S3. SEM image of thermally expanded graphene oxide (TEGO) from SA100F with (a) HGO, (b) HGO+, and (c) IGO with different magnifications: (1-2) x500 and x10,000, respectively.

Fig. S4. High magnification SEM image of (a) GO, and (b-i) TEGO powders by annealing temperature 100, 200, 300, 400, 500, 600, and

700 °C, respectively.

Table S5. Comparison of the SSA of TEGO by the starting graphite source, oxidation method, and C/O ratio of GO with the other references.

Starting graphite	Oxidation method	C/O ratio of GO	SSA (m²/g)	Ref.
Graphite (450 nm)	Hummers	-	62.2 – 403.7	[6]
-	Hummers	1.8	300	[7]
Amorphous graphite	Tour	-	75 – 437.62	[8]
Graphite powder (5 – 20 µm)	Hummers	2.01	46 - 248	[9]
SPG NEG	HGO			
(<45 & 150 μm)	HGO+ IGO	1.38 – 2.05	500 - 773	This work

References

 [1] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, carbon 45(7) (2007) 1558-1565.

[2] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation, Journal of materials science 47(10) (2012) 4400-4409.

[3] X. Hu, Y. Yu, J. Zhou, L. Song, Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide, Nano 9(03) (2014) 1450037.

[4] L. Shen, L. Zhang, K. Wang, L. Miao, Q. Lan, K. Jiang, H. Lu, M. Li, Y. Li, B. Shen, Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite, RSC advances 8(31) (2018) 17209-17217.

[5] C.K. Chua, Z. Sofer, M. Pumera, Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition, Chemistry–A European Journal 18(42) (2012) 13453-13459.

[6] J.M. Kim, W.G. Hong, S.M. Lee, S.J. Chang, Y. Jun, B.H. Kim, H.J. Kim, Energy storage of thermally reduced graphene oxide, International journal of hydrogen energy 39(8) (2014) 3799-3804.

[7] Y. Qiu, F. Guo, R. Hurt, I. Külaots, Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications, Carbon 72 (2014) 215-223.

[8] I. Sengupta, S. Chakraborty, M. Talukdar, S.K. Pal, S. Chakraborty, Thermal reduction of graphene oxide: How temperature influences purity, Journal of Materials Research 33(23) (2018) 4113-4122.

[9] S.B. Singh, M. De, Thermally exfoliated graphene oxide for hydrogen storage, Materials Chemistry and Physics 239 (2020) 122102.