Supporting Information for

Ligand-Free Iridium-Catalyzed Regioselective C-H Borylation of Indoles

Zilong Pan,^{a,b} Luhua Liu,^{b,c} Senmiao Xu^{a,*}and Zhenlu Shen,^{a,*}

^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

^bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

E-mail: zhenlushen@zjut.edu.cn

<u>senmiaoxu@licp.cas.cn</u>

Table of Contents

1.	General	S2
2.	General procedure for the Synthesis of N- isobutyryl substrates (GP1)	S3
3.	Effect of N-substituent on regioselectivity	S8
4.	Crude ¹ H NMR of C2-borylated product 2a ' from Table 1, entry 4	S9
5.	General procedure for the catalytic C-H borylation (GP2)	S9
6.	Gram-scale prepration of 2a	S15
7.	Synthetic Application of 2a	S15
	a) Bromination	S15
	b) Iodination	S16
	c) Iodination/deacylation	S16
	d) Cynantion	S17
	e) Cycnation/deacylation	S17
8.	NMR Spectra for all New and Key Compounds	S19

1. General

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using standard Schlenk techniques or glovebox.

THF, CH₂Cl₂, *n*-heptane, *n*-hexane, and 1,4-dioxane were purified by passing through a neutral alumina column under argon. All other chemicals and solvents were used as received. Compounds **S1** (CAS: 576-15-8),¹ **S2** (CAS: 73747-53-2),² **S3** (CAS: 70957-04-9),³ **S4** (CAS: 39203-20-8),⁴ **S5** (CAS: 119668-50-7)⁵ were prepared according to the literature procedures¹⁻⁵ and the characterization data are consistent with the literature reported.¹⁻⁵

¹H NMR, ¹³C NMR, ¹⁹F NMR and ¹¹B NMR spectra were recorded on Zhongke-Niujin 400, and Bruker DRX400 spectrometers at ambient temperature with CDCl₃ as solvent. ¹³C shifts were obtained with ¹H decoupling. Chemical shifts and coupling constants are listed in ppm and Hz, respectively. High-resolution mass spectroscopy data were obtained on Agilent 6530, Agilent 6224 TOF LC/MS, and Agilent 7205 GCQTOF spectrometers. X-ray crystallography was measured on an XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. Melting points were determined on an Electrothermal IA9000 Series Digital Melting Point Apparatus.

2. General procedure for the Synthesis of N- isobutyryl substrates (GP1)

The synthesis of compound 1 was adapted from the literature procedures.⁶ To a 50-mL flask charged with indole (2 mmol), DMAP (0.4 mmol), Et₃N (0.4 mL. 3 mmol) and DCM (10 mL) was slowly added isobutyryl chloride (1.5 eq.) at 0 °C. The reaction was then warmed to room temperature and allowed to stir at this temperature for additional 16 h. After the conclusion of the reaction, H₂O (20 mL) was then added. The biphasic mixture was then extracted with DCM 3 times (3 X 10 mL). The combined organic phase was washed with 1 M HCl (20 mL) and then dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was then purified by chromatography on silica gel using PE/EtOAc as the eluent to afford **1**.

Compound **1a** (CAS: 343773-85-3): Rf = 0.4 (PE/EtOAc = 50:1), white solid, mp = 76 -78 °C, 0.34 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 3.6 Hz, 1H), 7.41 - 7.33 (m, 1H), 7.31 - 7.27 (m, 1H), 6.66 (d, *J* = 4.0 Hz, 1H), 3.56 - 3.05 (m, 1H), 1.37 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 135.8, 120.4, 125.1, 124.5, 123.6, 120.7, 116.8, 100.0, 23.8, 10.5; HPMS (FSLTC

130.4, 125.1, 124.5, 123.6, 120.7, 116.8, 109.0, 33.8, 19.5; HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for C₁₂H₁₃NNaO 210.0889, found 210.0881.

Compound **1b**: Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 62 -66 °C, 0.37 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, *J* = 9.2, 4.8 Hz, 1H), 7.45 (d, *J* = 4.0 Hz, 1H), 7.12 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.98 (td, *J* = 9.2, 2.8 Hz, 1H), 6.52 (dd, *J* = 4.0, 0.4 Hz, 1H), 3.30 - 3.15 (m, 1H), 1.27 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

175.6, 159.6 (d, J = 238.7 Hz), 132.2 , 131.4 (d, J = 10.0 Hz), 126.0, 117.9 (d, J = 9.1 Hz), 112.8 (d, J = 24.7 Hz), 108.7 (d, J = 3.8 Hz), 106.2 (d, J = 23.7 Hz), 33.6, 19.5; ¹⁹F NMR (376 MHz, CDCI3) δ -119.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃FNO 206.0976, found 206.0972.

Compound **1c** (CAS: 1855896-84-2): Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 72 - 75 °C, 0.40 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.8 Hz, 1H), 7.53 (s, 1H), 7.52 (d, *J* = 3.6 Hz, 2H), 7.31 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.60 (d, *J* = 3.6 Hz, 1H), 3.48 - 3.10 (m, 1H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.6, 134.2,

(d, J = 6.8 HZ, 6H); ¹³C[¹H] NMR (100 MHZ, CDCl₃) 6 175.6, 134.2, 131.6, 129.2, 125.8, 125.3, 120.3, 117.9, 108.3, 33.7, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃CINO 222.0680, found 222.0675.

CL

Compound **1d** (CAS: 1855896-77-3): Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 80 -83 °C, 0.47 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.8 Hz, 1H), 7.68 (d, *J* = 2.0 Hz, 1H), 7.50 (d, *J* = 4.0 Hz, 1H), 7.44 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.58 (dd, *J* = 3.6, 0.4 Hz, 1H), 3.68 - 3.00 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7,

Br N O

Me

134.5, 132.1, 127.9, 125.7, 123.4, 118.3, 116.9, 108.2, 33.8, 19.4; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{12}H_{13}BrNO$ 266.0175, found 266.0174.

Compound **1e** (CAS: 1855896-67-1): Rf = 0.5 (PE/EtOAc = 30:1), white solid, mp = 65 -68 °C, 0.35 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 4.0 Hz, 1H), 7.37 (s, 1H), 7.19 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.59 (d, *J* = 3.6 Hz, 1H), 3.39 - 3.20 (m, 1H), 2.46 (s, 3H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.6,

133.9, 133.1, 130.6, 126.3, 124.5, 120.6, 116.4, 108.8, 33.6, 21.3, 19.4; HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for C₁₃H₁₅NNaO 224.1046, found 224.1058.

Compound **1f** (CAS: 1855896-72-8): Rf = 0.3 (PE/EtOAc = 30:1), white Solid, mp = 76 -80 °C, 0.40 g, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 9.2 Hz, 1H), 7.48 (d, *J* = 4.0 Hz, 1H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.96 (dd, *J* = 9.2, 2.4 Hz, 1H), 6.58 (d, *J* = 3.6 Hz, 1H), 3.86 (s, 3H), 3.37 - 3.22 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100

MHz, CDCl₃) δ 175.5, 156.4, 131.4, 130.5, 125.2, 117.6, 113.5, 108.9, 103.5, 55.7, 33.5, 19.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₅NNaO₂ 240.0995, found 240.0990.

Compound **1g**: Rf = 0.4 (PE/EtOAc = 30:1), white solid, mp = 151 -154 °C, 0.48 g, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 1.6 Hz, 1H), 7.68 – 7.63 (m, 2H), 7.61 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.54 (d, *J* = 4.0 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.38 – 7.32 (m, 1H), 6.71 (dd, *J* = 3.6, 0.4 Hz, 1H), 3.47 – 3.21 (m, 1H), 1.38 (d, *J* = 6.8

1H), 6.71 (dd, J = 3.6, 0.4 Hz, 1H), 3.47 – 3.21 (m, 1H), 1.38 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 141.5, 137.0, 135.2, 131.0, 128.8, 127.4, 127.0, 125.2, 124.7, 119.2, 117.0, 109.3, 33.8, 19.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for

C₁₈H₁₇NNaO 286.1202, found 286.1204.

Compound **1h**: Rf = 0.4 (PE/EtOAc = 40:1), white solid, mp = 158 -163 °C, 0.53 g, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 7.59 (dd, J = 8.6, 1.8 Hz, 1H), 7.56 - 7.51 (m, 3H), 7.27 (s, 1H), 7.25 (s, 1H), 6.70 (d, J = 3.6 Hz, 1H), 3.51 - 3.13 (m, 1H), 2.41 (s, 3H), 1.38 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 138.6, 136.7, 130.9,

129.5, 127.2, 125.1, 124.5, 118.9, 117.0, 109.3, 77.3, 77.0, 76.7, 33.8, 21.1, 19.5; HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{19}H_{19}NNaO$ 300.1359, found 300.1370.

Compound **1i**: Rf = 0.4 (PE/EtOAc = 1:1), white solid, mp = 115 -120 °C, 0.31 g, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.8 Hz, 1H), 8.22 (s, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.58 (d, *J* = 3.6 Hz, 1H), 6.75 (d, *J* = 4.0 Hz, 1H), 3.72 - 3.58 (m, 1H), 3.41 - 3.22 (m, 1H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.25 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.3, 175.8, 138.3, 131.9, 130.4, 125.9, 125.5,

Ω

121.7, 116.7, 109.6, 35.4, 33.9, 19.4, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₆H₂₀NO₂ 258.1489, found 258.1490.

Compound **1j**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 101 - 104 °C, 0.44 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.8 Hz, 1H), 8.29 (d, *J* = 1.6 Hz, 1H), 8.04 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.56 (d, *J* = 4.0 Hz, 1H), 6.72 (d, *J* = 3.6 Hz, 1H), 3.94 (s, 3H), 3.37 - 3.26 (m, 1H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 167.4, 138.4, 130.2, 126.4, 125.8, 125.5, 123.0, 116.5,

109.4, 52.1, 33.9, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₆NO₃ 246.1125, found 246.1129.

Compound **1k**: Rf = 0.4 (PE/EtOAc = 10:1), colorless oil, 0.46 g, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 3.6 Hz, 1H), 7.27 (d, *J* = 2.4 Hz, 1H), 7.04 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.61 (d, *J* = 3.6 Hz, 1H), 3.38 – 3.23 (m, 1H), 2.89 – 2.76 (m, 1H), 1.39 – 1.28 (m, 12H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 175.6, 147.1, 133.4, 131.0, 125.6, 118.7, 117.4,

113.1, 108.9, 34.2, 33.6, 19.4, 19.0; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{16}H_{20}NO_3$ 274.1438, found 274.1445.

Compound **1I**: Rf = 0.3 (PE/EtOAc = 10:1), yellow solid, mp = 121 -124 °C, 0.40 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 9.2 Hz, 1H), 8.49 – 8.47 (m, 1H), 8.25 – 8.21 (m, 1H), 7.67 (d, *J* = 3.6 Hz, 1H), 6.80 (d, *J* = 4.k0 Hz, 1H), 3.42 – 3.26 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 144.3, 138.8, 130.2, 127.4,

120.3, 117.0, 116.9, 109.4, 34.0, 19.3; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{12}H_{13}N_2O_3$ 233.0921, found 233.0932.

Compound **1m**: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 72 -80 °C, 5.72 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 0.8 Hz, 1H), 7.63 (d, *J* = 4.0 Hz, 1H), 7.60 (dd, *J* = 8.8, 1.6 Hz, 1H), 6.72 (dd, *J* = 4.0, 0.4 Hz, 1H), 3.39 – 3.26 (m, 1H), 1.37 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 137.6, 130.3,

128.3, 126.7, 125.5, 119.6, 117.7, 108.6, 107.0, 34.0, 19.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₂N₂NaO 235.0842, found 235.0841.

Compound **1n**: Rf = 0.6 (PE/EtOAc = 10:1), white solid, mp = 46 -49 °C, 0.34 g, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 10.8, 2.4 Hz, 1H), 7.49 - 7.44 (m, 2H), 7.05 - 6.98 (m, 1H), 6.61 (dd, *J* = 4.0, 0.8 Hz, 1H), 3.34 - 3.21 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 161.3 (d, *J* = 240.5 Hz), 135.9 (d, *J* = 13.1 Hz),

126.6, 124.89 (d, J = 4.1 Hz), 121.2 (d, J = 10.0 Hz), 111.8 (d, J = 24.2 Hz), 108.8 , 104.2 (d, J = 28.6 Hz), 33.7 , 19.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃FNO 206.0976, found 206.0967.

Compound **1o**: Rf = 0.6 (PE/EtOAc = 10:1), white solid, mp = 61 -65 °C, 0.38 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 1.6 Hz, 1H), 7.49 (d, *J* = 4.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.25 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.62 (d, *J* = 3.6 Hz, 1H), 3.35 - 3.22 (m, 1H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 136.1, 131.1, 128.8,

125.1, 124.2, 121.3, 117.2, 108.7, 33.8, 19.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₂CINNaO 244.0500, found 244.0501.

Compound **1p**: Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 68 -71 °C, 0.45 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.47 (d, *J* = 3.6 Hz, 1H), 7.44 - 7.35 (m, 1H), 7.26 (s, 1H), 6.61 (d, *J* = 3.6 Hz, 1H), 3.35 - 3.20 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 136.4, 129.1, 126.9, 125.0, 121.7, 120.0, 118.9, 108.8,

33.8, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃BrNO 266.0175, found 266.0186.

Compound **1q**: Rf = 0.4 (PE/EtOAc = 40:1), white solid, 0.35 g, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 4.0 Hz, 1H), 7.12 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.61 (dd, *J* = 3.6, 0.4 Hz, 1H), 3.40 - 3.19 (m, 1H), 2.50 (s, 3H), 1.36 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 136.1, 135.6, 128.0, 125.0,

123.9, 120.2, 117.1, 108.9, 33.7, 21.9, 19.4; HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{13}H_{15}NNaO$ 224.1046, found 224.1045.

Compound **1r**: Rf = 0.4 (PE/EtOAc = 30:1), white oil, 0.35 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 2.4 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H), 7.37 (d, *J* = 4.0 Hz, 1H), 6.92 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.57 (dd, *J* = 4.0, 0.8 Hz, 1H), 3.88 (s, 3H), 3.35 - 3.21 (m, 1H), 1.35 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.2,

158.4, 136.8, 124.0, 123.3, 121.1, 113.2, 109.0, 100.7, 55.6, 33.8, 19.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₅NNaO₂ 240.0995, found 240.0987.

Compound **1s**: Rf = 0.5 (PE/EtOAc = 10:1), white solid, mp = 65 -68 °C, 0.46 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 0.8 Hz, 1H), 7.68 - 7.62 (m, 2H), 7.52 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.71 (dd, *J* = 3.6, 0.4 Hz, 1H), 3.39 - 3.25 (m, 1H), 1.38 (d, *J* = 6.8 Hz,

Me

6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 135.0, 132.8, 127.2 (q, *J* = 32.0 Hz), 126.9, 124.8 (q, *J* = 270.2 Hz), 121.0, 120.4 (q, *J* = 3.6 Hz), 114.5 (q, *J* = 4.4 Hz), 108.7, 33.8, 19.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₃F₃NO 256.0944, found 256.0946.

Compound **1t**: Rf = 0.2 (PE/EtOAc = 30:1), colorless oil, 0.26 g, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 3.6 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 6.73 (d, *J* = 4.0 Hz, 1H), 3.81 - 3.68 (m, 1H), 3.47 - 3.26 (m, 1H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.28 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃)

$$\label{eq:stability} \begin{split} &\delta \ 204.6,\ 175.9,\ 135.4,\ 133.9,\ 133.3,\ 127.6,\ 123.7,\ 120.8,\ 117.6,\ 108.9,\ 35.3,\ 33.8,\ 19.5,\ 19.4;\\ &\mathsf{HRMS}\ (\mathsf{ESI-TOF})\ \mathsf{m/z}:\ [\mathsf{M}+\mathsf{H}]^+\ \mathsf{calcd}\ for\ \mathsf{C}_{16}\mathsf{H}_{20}\mathsf{NO}_2\ 258.1489,\ found\ 258.1491. \end{split}$$

Compound **1u**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 108 - 113 °C, 0.43 g, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, *J* = 0.4 Hz, 1H), 7.98 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.65 (d, *J* = 3.6 Hz, 1H), 7.60 (dd, *J* = 8.4, 0.4 Hz, 1H), 6.69 (dd, *J* = 4.0, 0.8 Hz, 1H), 3.93 (s, 3H), 3.41 - 3.20 (m, 1H), 1.37 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100

MHz, CDCl₃) δ 175.7, 167.6, 135.2, 134.1, 127.4, 126.9, 124.9, 120.4, 118.6, 108.8, 52.1, 33.9, 19.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C₁₄H₁₆NO₃ 246.1125, found 246.1126.

Compound **1v**: Rf = 0.5 (PE/EtOAc = 10:1), white solid, mp = 147 -150 °C, 0.36 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.70 (d, J = 3.6 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.51 (dd, J = 8.4, 1.6 Hz, 1H), 6.73 (dd, J = 3.6, 0.4 Hz, 1H), 3.40 – 3.26 (m, 1H), 1.38 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 134.8, 133.6, 127.8, 126.8,

121.5, 121.4, 119.8, 108.8, 108.0, 33.9, 19.4; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{13}H_{13}N_2O$ 213.1022, found 213.1023.

Compound **1w**: Rf = 0.4 (PE/EtOAc = 30:1), 0.35 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 1H), 6.65 (d, *J* = 3.6 Hz, 1H), 3.47 – 3.27 (m, 1H), 2.52 (s, 3H), 1.39 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.6, 134.2, 130.9, 126.8, 125.4, 124.8, 122.8, 117.4, 107.6, 33.8, 21.1, 18.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₅NNaO 224.1046, found 224.1040.

Compound **1x**: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 96 -100 °C, 5.72 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 3.6 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 3.6 Hz, 1H), 3.89 (s, 3H), 3.38 – 3.21 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.4, 168.5, 131.9, 131.4,

126.0, 125.3, 123.8, 123.3, 122.4, 108.7, 52.0, 34.1, 19.4; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for C₁₄H₁₆NO₃ 246.1125, found 246.1129.

0

Compound **3a** [CAS: 1451075-03-8]⁷: Rf = 0.3 (PE/EtOAc = 10:1), colorless oil, 0.34 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.47 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.26 – 7.17 (m, 2H), 6.38 (s, 1H), 3.60 – 3.49 (m, 1H), 2.63 (s, 3H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.6, 137.5, 136.2, 129.8, 123.3, 122.8, 119.9, 114.6, 109.2, 35.5, 19.6, 17.0.

Compound **3b** [CAS: 1824689-93-1]⁸: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 70 – 73 °C, 0.35 g, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.30 – 7.26 (m, 2H), 3.32 – 3.24 (m, 1H), 2.30 (d, J = 1.2 Hz, 3H), 1.35 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.4, 136.1, 131.4, 125.2, 123.3, 121.5, 118.7, 118.2, 116.9, 33.7, 19.5, 9.7.

Compound **3c**: Rf = 0.3 (PE/EtOAc = 10:1), colorless oil, 0.35 g, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 1H), 7.47 – 7.43 (m, 1H), 7.26 – 7.23 (m, 2H), 3.61 – 3.50 (m, 1H), 2.55 (s, 3H), 2.21 (s, 3H), 1.34 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.5, 135.4, 132.7, 131.2, 123.5, 122.5, 118.2, 115.0, 114.2, 35.6, 19.6, 13.9, 8.7.

3. Effect of N-substituent on regioselectivity

Table S1. Assessment of N-substituent of regioselectivity

H N R	[IrCl(cod)] ₂ (5 mol%), HBpin n-hexane, 80 °C, 12 h	Bpin H R	H Bpin R
Entry	R	C3/C2	
1	Н	n.d. (trace)	
2	C(O)Me (S1)	90:10	
3	C(O)Et (S2)	65:35	
4	C(O)- <i>i</i> -Pr (1a)	97:3	
5	C(O)- <i>t</i> -Bu (S3)	94:6	
6	C(O)OMe (S4)	79:21	
7	$C(O)NEt_2(\mathbf{S5})$	58:42	

Conclusion: C(O)-*i*-Pr is optimal in terms of regioselectivity.

4. Crude ¹H NMR of C2-borylated product 2a' from Table 1, entry 4

5. General procedure for the catalytic C-H borylation (GP2)

In a N₂-filled glovebox, to a 25-mL flame-dried Schlenk tube charged with [IrCl (cod)]₂ (6.7 mg, 0.01 mmol), HBpin (38.4 mg, 0.3 mmol), *N*-isobutyryl indole **1** (0.2 mmol) was added *n*-hexane (1 mL). The resulting mixture allowed to stir at 80 °C for 12 - 24 h. After the completion of the reaction, the regioselectivity was determined by GC analysis or ¹H NMR of crude reaction mixture. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using PE/EtOAc as the eluent to afford desired borylated product **2**.

Compound **2a**: Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 114 -116 °C, 49.6 mg, 79% yield, C3:C2 = 97:3 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, *J* = 7.2, 1.2 Hz, 1H), 8.01 – 7.96 (m, 1H), 7.93 (s, 1H), 7.37 – 7.28 (m, 2H), 3.47 – 3.33 (m, 1H), 1.38 (s, 12H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.01, 136.7, 133.7, 133.6, 125.0, 123.8, 122.4, 116.6, 83.5, 77.0, 33.8, 24.9, 19.6; ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; HRMS (ESI- TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₅BNO₃ 314.1922, found 314.1923.

Compound **2b**: Rf = 0.45 (PE/EtOAc = 40:1), white solid, mp = 98 -100 °C, 48.7 mg, 77% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, J = 8.8, 4.8 Hz, 1H), 7.88 (s, 1H), 7.57 (dd, J = 9.2, 2.8 Hz, 1H), 7.06 - 6.93 (m, 1H), 3.52 - 3.00 (m, 1H), 1.31 (s, 12H), 1.28 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 159.9 (d, J = 239.9 Hz), 134.9, 134.6 (d, J = 10.1 Hz), 133.0, 117.5 (d, J = 9.1 Hz), 112.7 (d, J = 25.0 Hz),

108.1 (d, J = 23.7 Hz), 83.7, 33.6, 24.9, 19.6; ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -119.3; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₂₃BFNNaO₃ 354.1647, found 354.1649.

Compound 2c: Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 132 -138 °C, 57.7 mg, 83% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ C 8.39 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.94 (s, 1H), 7.30 (dd, J = 8.8, 2.0 Hz, 1H), 3.44 – 3.31 (m, 1H), 1.38 (s, 12H), 1.35 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 139.0, 135.0, 134.7, 129.5, 125.2, 122.1, 117.6, 83.7, 33.7, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₄BCINO₃ 348.1532, found 348.1538.

Compound 2d: Rf = 0.45 (PE/EtOAc = 40:1), white solid, mp = 122 -125 °C, 62.7 mg, 80% yield, C3:C2 = 96:4 (GC).¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 2.0 Hz, 1H), 7.92 (s, 1H), 7.44 (dd, J = 8.8, 2.0 Hz, 1H), 3.44 - 3.28 (m, 1H), 1.38 (s, 12H), 1.35 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 135.4, 135.1, 134.6, 127.9, 125.1, 118.0, 117.3, 83.8, 33.7, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 29.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₄BBrNO₃ 392.1027, found 392.1023.

Compound 2e: Rf = 0.4 (PE/EtOAc = 30:1), white solid, mp = 159 -163 °C, 45.2 mg, 69% yield, C3:C2 = 95:5 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.0 Hz, 1H), 7.90 (s, 1H), 7.75 (t, J = 0.8 Hz, 1H), 7.16 (dd, J = 8.4, 1.6 Hz, 1H), 3.47 – 3.31 (m, 1H), 2.47 (s, 3H), 1.39 (s, 12H), 1.34 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 134.9, 133.87, 133.5, 133.4, 126.3, 122.2, 116.2, 83.5, 33.6, 24.9, 21.5, 19.6;

¹¹B NMR (128 MHz, CDCl₃) δ 30.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C₁₆H₂₅N2O₃ 293.1860, found 293.1860.

Compound 2f: Rf = 0.2 (PE/EtOAc = 30:1), white solid, mp = 110 -114 °C, 62.7 mg, 91% yield, C3:C2 = 96:4 (GC). ¹H NMR (400 MHz, CDCl₃) MeO δ 8.36 (d, J = 9.6 Hz, 1H), 7.90 (s, 1H), 7.47 (d, J = 2.8 Hz, 1H), 6.95 (dd, J = 9.2, 2.8 Hz, 1H), 3.89 (s, 3H), 3.50 - 3.09 (m, 1H), 1.38 (s, 12H), 1.34 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.7, 156.6, 134.5, 134.3, 131.4, 117.2, 113.0, 105.67, 83.5, 55.7, 33.5, 24.9, 19.6; ¹¹B NMR (128 MHz, CDCl₃) δ 30.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for

Ω

Me

Bpin

50

C₁₉H₂₆BNNaO₄ 366.1847, found 366.1850.

Compound **2g**: Rf = 0.4 (PE/EtOAc = 30:1), white solid, mp = 178-180 °C, 58.4 mg, 75% yield, C3:C2 = 92:8 (¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 2.0 Hz, 1H), 7.97 (s, 1H), 7.75 - 7.65 (m, 2H), 7.59 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 7.2 Hz, 1H), 3.58 - 3.28 (m, 1H), 1.39 (s, 12H), 1.37 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 142.0,

Bpin N O

Ph

137.2, 136.1, 134.3, 133.9, 128.7, 127.6, 126.8, 124.6, 120.9, 116.7, 83.6, 33.7, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 29.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₂₉BNO₃ 390.2235, found 390.2234.

Compound **2h**: Rf = 0.5 (PE/EtOAc = 40:1), white solid, mp = 184 -188 °C, 52.4 mg, 65% yield, C3:C2 = 94:6 (¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 1.6 Hz, 1H), 7.97 (s, 1H), 7.62 - 7.55 (m, 3H), 7.30 (s, 1H), 7.28 (s, 1H), 3.49 - 3.31 (m, 1H), 2.42 (s, 3H), 1.39 (s, 12H), 1.38 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 139.1, 137.2, 136.5, 136.0, 134.3, 133.9, 129.4, 127.5, 124.5, 120.7,

116.7, 83.6, 33.7, 24.9, 21.1, 19.6; ¹¹B NMR (128 MHz, CDCl₃) δ 30.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₃₁BNO₃ 404.2392, found 404.2381.

Compound **2i**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 135 - 140 °C, 42.9 mg, 56% yield, C3:C2 = 99:1 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 1.6 Hz, 1H), 8.51 (d, *J* = 8.8 Hz, 1H), 7.98 (s, 1H), 7.97 (dd, *J* = 8.8, 2.0 Hz, 1H), 3.74 - 3.61 (m, 1H), 3.46 - 3.33 (m, 1H), 1.39 (s, 12H), 1.37 (d, *J* = 6.8 Hz, 6H), 1.26 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.6, 176.0, 139.2, 134.8,

133.4, 132.3, 125.4, 123.4, 116.4, 83.8, 35.5, 33.9, 24.9, 19.5, 19.4; ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₃₀BNNaO₄ 406.2160, found 406.2162.

Compound **2j**: Rf = 0.35 (PE/EtOAc = 10:1), white solid, mp = 130 - 135 °C, 55.0 mg, 74% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 1.2 Hz, 1H), 8.51 (dd, *J* = 8.8, 0.4 Hz, 1H), 8.04 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.99 (s, 1H), 3.96 (s, 3H), 3.48 - 3.31 (m, 1H), 1.39 (s, 12H), 1.37 (d, *J* = 2.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.1, 167.7, 139.4, 134.8, 133.1, 126.4, 125.8, 124.6, 116.3,

83.8, 52.1, 33.9, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 29.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆BNNaO₅ 394.1796, found 394.1795.

Compound **2k**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 149 -152 °C, 69.5 mg, 87% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.8 Hz, 1H), 7.95 (s, 1H), 7.62 (d, *J* = 2.3 Hz, 1H), 7.03 (dd, *J* = 9.2, 2.4 Hz, 1H), 3.48 – 3.29 (m, 1H), 2.94 – 2.70 (m, 1H), 1.37 (s, 12H),1.36(d,*J*=6.8 Hz,6H), 1.34(d, *J*=6.8 Hz, 12H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.2, 175.9,

147.4, 134.7, 134.4, 134.2, 118.9, 117.1, 114.8, 83.6, 34.2, 33.6, 24.9, 19.6, 19.0. ^{11}B NMR (128 MHz, CDCl₃) δ 29.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C_{22}H_{31}BNO_5 400.2290, found 400.2288.

Compound **2I**: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 208 - 210 °C, 46.6 mg, 65% yield, C3:C2 = 99:1 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 2.4 Hz, 1H), 8.58 (d, *J* = 9.2 Hz, 1H), 8.23 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.06 (s, 1H), 3.49 - 3.32 (m, 1H), 1.40 (s, 12H), 1.38 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 144.6, 139.8, 136.1, 133.4, 120.4, 118.7, 116.7, 84.1, 34.0, 24.9,

19.4; ¹¹B NMR (128 MHz, CDCl₃) δ 29.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₄BN₂O₅ 359.1776, found 359.1786.

Compound **2m**: Rf = 0.2 (PE/EtOAc = 10:1), white solid, mp = 166 - 170 °C, 41.3 mg, 61% yield, C3:C2 = 97:3 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.8 Hz, 1H), 8.34 (d, *J* = 1.2 Hz, 1H), 8.02 (s, 1H), 7.59 (dd, *J* = 8.4, 1.6 Hz, 1H), 3.54 - 3.22 (m, 1H), 1.39 (s, 12H), 1.36 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 138.6, 135.3, 133.5, 128.2, 127.5, 119.9, 117.4, 107.2, 84.0, 34.0,

Bpin

24.9, 19.4; ¹¹B NMR (128 MHz, CDCl₃) δ 29.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₄BN₂O₃ 339.1874, found 339.1870.

Compound **2n**: Rf = 0.6 (PE/EtOAc = 10:1), white solid, mp = 116 -120 °C, 40.4 mg, 61% yield, C3:C2 = 96:4 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 10.4, 2.4 Hz, 1H), 7.90 (s, 1H), 7.89 (dd, *J* = 12.4, 5.6 Hz, 3H), 7.10 - 6.99 (m, 2H), 3.45 - 3.28 (m, 1H), 1.38 (s, 12H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 161.3 (d, *J* = 240.4 Hz), 136.7 (d, *J* = 13.0 Hz), 133.8 (d, *J* = 3.5 Hz), 129.5 , 123.0 (d, *J* = 9.8

Hz), 136.7 (d, J = 13.0 Hz), 133.8 (d, J = 3.5 Hz), 129.5 , 123.0 (d, J = 9.8 Hz), 111.9 (d, J = 23.8 Hz), 103.9 (d, J = 28.7 Hz), 83.6, 33.7, 24.9, 19.5. ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₃BFNNaO₃ 354.1647, found 354.1657.

Compound **20**: Rf = 0.4 (PE/EtOAc = 40:1), white solid, mp = 134 -140 °C, 58.4 mg, 84% yield, C3:C2 = 97:3 (GC).¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 1.6 Hz, 1H), 7.90 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.28 (d, *J* = 2.0 Hz, 1H), 3.42 - 3.29 (m, 1H), 1.38 (s, 12H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 137.0, 134.1, 131.8, 131.0, 124.6, 123.1, 116.9, 83.7, 33.8, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃)

δ 29.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₄BCINO₃ 348.1532, found 348.1532.

Compound **2p**: Rf = 0.4 (PE/EtOAc = 40:1), white solid, mp = 146 -150 °C, 57.3 mg, 73% yield, C3:C2 = 92:8 (GC).¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 1.6 Hz, 1H), 7.89 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.41 (dd, *J* = 8.4, 2.0 Hz, 1H), 3.47 - 3.23 (m, 1H), 1.37 (s, 12H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 137.3, 134.0, 132.2, 127.1, 123.6, 119.7, 118.8, 83.7, 33.8, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 29.8: HBMS (ESI-TOE) m/z: [M+H]⁺ calcd for CarHarBBrN

Bpin N O

Bpin

CDCl₃) δ 29.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₄BBrNO₃ 392.1027, found 392.1026.

Compound **2q**: Rf = 0.4 (PE/EtOAc = 40:1), white solid, mp = 132 -136 °C, 55.6 mg, 85% yield, C3:C2 = 95:5 (GC).¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.86 (s, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 3.50 - 3.27 (m, 1H), 2.48 (s, 3H), 1.37 (s, 12H), 1.34 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.2, 135.1, 133.2, 125.2, 121.9, 116.2, 83.4, 33.7, 24.9, 21.9, 19.6; ¹¹B NMR (128 MHz,

Me

CDCl₃) δ 30.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd forC₁₉H₂₆BNNaO₃ 350.1898, found 350.1894.

Compound **2r**: Rf = 0.4 (PE/EtOAc = 30:1), white solid, mp = 116 -120 °C, 54.9 mg, 80% yield, C3:C2 = 96:4 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 2.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.82 (s, 1H), 6.94 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.88 (s, 3H), 3.46 – 3.32 (m, 1H), 1.37 (s, 12H), 1.35 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.4, 158.3, 137.6, 132.4, 126.9, 122.8, 113.4, 100.4, 83.5, 55.6, 33.8, 24.9,

19.6; ¹¹B NMR (128 MHz, CDCl₃) δ 33.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₂₆BNNaO₄ 366.1847, found 366.1858.

Compound **2s**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 158 - 162 °C, 68.6 mg, 90% yield, C3:C2 = 97:3 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 8.04 (s, 1H), 7.54 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.46 - 3.35 (m, 1H), 1.39 (s, 12H), 1.37 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.0, 135.9, 135.8, 135.7, 127.0 (q, *J* = 32.0 Hz), 124.9 (q, *J* = 270.0 Hz), 122.8, 120.6

(q, J = 3.4 Hz), 114.2 (q, J = 4.2 Hz), 83.8, 33.8, 24.9, 19.5; ¹¹B NMR (128 MHz, CDCl₃) δ 29.9; ¹⁹F NMR (376MHz, CDCl₃) δ -61.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₄BF₃NO₃ 382.1796, found 382.1803.

Compound **2t**: Rf = 0.2 (PE/EtOAc = 30:1), white solid, mp = 131 - 135 °C, 46.0 mg, 60% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ 9.12 (d, *J* = 1.2 Hz, 1H), 8.06 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.97 (dd, *J* = 8.4, 1.6 Hz, 1H), 3.77 - 3.65 (m, 1H), 3.49 - 3.36 (m, 1H), 1.39 (s, 15H), 1.37 (s, 3H), 1.25 (d, *J* = 6.8 Hz, 6H); ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 204.7, 176.1, 137.2, 136.4, 136.3, 133.3, 124.0, 122.5, 117.3, 83.8, 35.3, 33.8, 24.9, 19.5, 19.4; ¹¹B NMR (128 MHz, CDCl₃) δ 30.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₃₀BNNaO₄ 406.2160, found 406.2155.

Compound 2u: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 207 -210 °C, 46.8 mg, 63% yield, C3:C2 = 98:2 (GC). ¹H NMR (400 MHz, CDCl₃) δ 9.15 (t, J = 1.2 Hz, 1H), 8.05 (s, 1H), 8.01 (d, J = 1.2 Hz, 2H), 3.93 (s, 3H), 3.50 - 3.28 (m, 1H), 1.38 (s, 12H), 1.37 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.9, 167.7, 137.3, 136.3, 136.2, 126.8, 125.2, 122.2, 118.3, 83.8, 52.0, 33.8, 24.9, 19.5;

¹¹B NMR (128 MHz, CDCI₃) δ 29.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₆BNNaO₅ 394.1796, found 394.1808.

Compound **2v**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 117 -121 °C, 42.6 mg, 63% yield, C3:C2 = 99:1 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.83 (dd, J = 0.8 Hz, 1H), 8.07 (s, 1H), 8.05 (d, J = 0.4 Hz, 1H), 7.54 (dd, J = 8.0, 1.6 Hz, 1H), 3.46 - 3.31 (m, 1H), 1.38 (s, 12H), 1.37 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 136.8, 136.4, 135.7, 127.0, 123.4, 121.1, 120.0, 108.0, 83.9, 33.9, 24.9, 19.4; ¹¹B

NMR (128 MHz, CDCl₃) δ 29.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₄BN₂O₃ 339.1874, found 339.1872.

Compound **2w**: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 116 -118 °C, 57.6 mg, 88% yield, C3:C2 = 93:7 (GC). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 3.51 – 3.35 (m, 1H), 2.46 (s, 3H), 1.37 (s, 12H), 1.37 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.8, 136.0, 135.1, 134.8, 127.7, 125.9, 123.9, 120.2, 83.4, 35.0, 24.9, 22.0, 19.8; ¹¹B NMR (128 MHz, CDCl₃) δ 30.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₉H₂₆BNNaO₃ 350.1898, found 350.1900.

Compound 2x: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 128 -130 °C, 65.3 mg, 88% yield, C3:C2 = 94:6 (GC). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.0, 1.2 Hz, 1H), 7.94 (s, 1H), 7.59 (dd, J = 7.2, 0.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 3.87 (s, 3H), 3.38 (dt, J = 13.6, 6.8 Hz, 1H), 1.38 (s, 3.14), 1.38 (s,12H), 1.34 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.6, 168.5, 135.2, 134.9, 132.3, 125.7, 125.2, 123.4, 122.0, 83.6, 51.9, 34.2,

24.9, 19.3; ¹¹B NMR (128 MHz, CDCl₃) δ 30.3; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₆BNNaO₅ 394.1796, found 394.1790.

Compound 4a: Rf = 0.3 (PE/EtOAc = 10:1), white solid, mp = 80 - 83°C, 26.0 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.99 (m, 1H), 7.66 - 7.63 (m, 1H), 726 - 7.20 (m, 2H), 3.61 - 3.54 (m, 1H), 2.79 (s, 3H), 1.37 (s, 12H), 1.32 (d, J = 6.4 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.5, 147.6, 136.4, 133.5, 123.1, 122.7, 122.2, 113.2, 83.0,

Bpin Ο 00

Bpin

Me

36.2, 25.0, 19.4, 15.8; ¹¹B NMR (128 MHz, CDCI₃) δ 30.3; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₆BNNaO₃ 350.1898, found 350.1900.

6. Gram-scale prepration of 2a

In a nitrogen filled glovebox, to a 75-mL flame-dried tube charged with [IrCl(cod)]₂ (89.8 mg, 0.13 mmol), HBpin (1.04 g, 8.1 mmol, 1.5 equiv), *N*-isobutyryl indole **1a** (1.00 g, 5.3 mmol) was added *n*-hexane (25 mL). The mixture was allowed to stir at 80 °C for 16 h. The regioselectivity was determined by GC analysis of crude reaction mixture after completion. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (40:1) as the eluent to afford desired borylated product **2a** (1.32 g, 79% yield).

7. Synthetic Application of 2a

a) Bromination

The reaction was adapted from the literature procedures.⁹ To a 15 mL seal bottle charged with CuBr₂ (4 equiv., 0.8 mmol, 179 mg), water (1 mL), methanol (1 mL) and **2a** (1 equiv., 0.2 mmol, 62.6 mg). The mixture was heated at 80 °C for 4 h. After cooling to room temperature, the mixture was extracted with Et2O four times. The combined organic layers were washed with water and brine, dried and concentrated. The residue was purified by column chromatography to give the product **5** as white solid. Rf = 0.4 (PE/EtOAc = 40:1), white solid, mp = 148 – 150 °C, 37 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 8.0 Hz, 1H), 7.59 (s, 1H), 7.56 – 7.52 (m, 1H), 7.46 – 7.40 (m, 1H), 7.40 – 7.34 (m, 1H), 3.34 – 3.21 (m, 1H), 1.37 (d, J = 6.8 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 175.0, 135.2, 129.3, 126.4, 124.2, 123.5, 119.4, 116.9, 100.1, 33.8, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃BrNO 266.0175, found 266.0170.

b) Iodination

The reaction was adapted from the literature procedures.¹⁰ NaOH (3.0 M in water, 1 mL) was added to a solution of **2a** (62.6 mg, 0.20 mmol) in diethyl ether (1.2 mL). After stirring for 10 min at room temperature, a solution of iodine (254 mg, 1.0 mmol) in diethyl ether 3 mL) was added over 5 min. The resulting mixture was allowed to stir at room temperature for 1 h. The mixture was then quenched with saturated aqueous Na₂S₂O₃ (10 mL). The mixture was diluted by H₂O (10 mL) and extracted with diethyl ether (3 × 15 mL), the combined organic layers were washed with saturated aqueous NaHCO₃ solution (10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography to give the product **4** as yellow oil. Rf = 0.4 (PE/EtOAc = 40:1), vinicolor oil, 44.0 mg, 70% yield.¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.39 (m, 1H), 7.66 (s, 1H), 7.49 – 7.32 (m, 3H), 3.34 – 3.20 (m, 1H), 1.36 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 135.3, 132.0, 128.9, 126.3, 124.3, 121.4, 116.7, 67.8, 33.9, 19.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃INO 314.0039, found 314.0039.

c) Iodination/deacylation

The reaction was adapted from the literature procedures.¹⁰ NaOH (3.0 M in water, 1 mL) was added to a solution of **2a** (62.6 mg, 0.20 mmol) in diethyl ether (1.2 mL). After stirring for 10 min at room temperature, a solution of iodine (254 mg, 1.0 mmol) in diethyl ether 3 mL) was added over 5 min. The resulting mixture was allowed to stir at room temperature for 18 h. The mixture was then quenched with saturated aqueous Na₂S₂O₃ (10 mL). The mixture was diluted by H₂O (10 mL) and extracted with diethyl ether (3 × 15 mL), the combined organic layers were washed with saturated aqueous NaHCO₃ solution (10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography to give the product **7** (CAS: 26340-47-6) as a white solid in 80% yield: Rf = 0.4 (PE/EtOAc = 10:1), white solid, mp = 66 – 68 °C, 34.0 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.55 – 7.43 (m, 1H), 7.39 – 7.34 (m, 1H), 7.27 – 7.18 (m, 3H). The characterization data is consistent

d) Cynantion

The reaction was adapted from the literature procedures.¹² To a flame-dried Schlenck tube was charged with **2a** (0.2 mmol, 1.0 equiv), *N*,*N*-Dimethylenediamine (0.24 mmol, 1.2 equiv), Cu₂O (0.08 mmol, 40 mol %) and triethylamine (0.3 mmol, 1.5 equiv). The tube was evacuated three times under vacuum and backfilled with O₂, and then connected with an oxygen balloon via a needle. Dried CH₃CN (3 mL) and TMSCN (0.22 mmol, 1.1 equiv) were injected via syringe. The mixture was stirred at rt. for 1 hours. The resultant mixture was evaporated under reduced pressure. The residue was purified by column chromatography to give the product **8** as white solid. Rf = 0.4 (PE/EtOAc = 20:1), white solid, mp = 122 – 123 °C, 38.0 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 8.0 Hz, 1H), 8.05 (s, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.54 – 7.38 (m, 2H), 3.43 – 3.21 (m, 1H), 1.39 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 133.6, 130.4, 126.6, 125.8, 123.9, 118.3, 115.9, 112.6, 92.7, 32.7, 18.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₃N₂O 213.1022, found 213.1026.

e) Cycnation/deacylation

The reaction was adapted from the literature procedures.¹² To a flame-dried Schlenck tube was charged with **2a** (0.2 mmol, 1.0 equiv), *N*,*N*-Dimethylenediamine (0.24 mmol, 1.2 equiv), Cu₂O (0.08 mmol, 40 mol %) and triethylamine (0.3 mmol, 1.5 equiv). The tube was evacuated three times under vacuum and backfilled with O_2 , and then connected with an oxygen balloon via a needle. Dried CH₃CN (3 mL) and TMSCN (0.22 mmol, 1.1 equiv) were injected via syringe. The mixture was stirred at rt. for 18 hours. The resultant mixture was evaporated under reduced

pressure. The residue was purified by column chromatography to give the product **9** (CAS: 5437-28-3) as white solid. Rf = 0.4 (PE/EtOAc = 8:1), white solid, mp = 76 – 78 °C, 23.0 mg, 80% yield.¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.73 (d, *J* = 2.8 Hz, 1H), 7.48 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.37 – 7.27 (m, 3H). The characterization data is consistent with the literature reported.¹³

f) Suzuki-Miyaura coupling

The reaction was adapted from the literature procedures.¹⁴ To a flame-dried Schlenck tube was charged with **2a** (75.0 mg, 0.24 mmol, 1.2 equiv), Pd(Ph₃)₄ (9.2 mg, 4 mol%), K₃PO₄ (127.0 mg, 0.6 mmol) and bromobenzene (31.4 mg, 0.2 mmol, 1.0 equiv). The tube was evacuated three times under vacuum and backfilled with N₂. Degassed toluene (1 mL) and H₂O (1 mL) were injected via syringe. The mixture was stirred at 65 °C for 12 hours. After cooling to the room temperature, the mixture was extracted with diethyl ether (3 × 15 mL). The combined organic layers were evaporated under reduced pressure. The residue was purified by column chromatography to give the product **10** as white solid. Rf = 0.4 (PE/EtOAc = 1:1), white solid, mp = 66 – 68 °C, 57.2 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.60 (s, 1H), 7.49 (d, *J* = 7.2 Hz, 2H), 7.45 – 7.30 (m, 3H), 3.67 – 3.10 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 136.6, 133.5, 129.0, 128.9, 128.0, 127.5, 125.6, 124.0, 123.9, 121.4, 119.8, 117.2, 33.9, 19.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₈NO 264.1383, found 264.1386.

8. NMR Spectra for all New and Key Compounds

¹H NMR spectrum of 1a

¹H NMR spectrum of 1q

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 f1 (ppm)

· · ·	1																			
00	90	80	70	60	50	40	30	20	10	0 f1 (ppm	-10)	-20	-30	-40	-50	-60	-70	-80	-90	-10

¹⁹F NMR spectrum of 2b

F	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹H NMR spectrum of 2e

¹³C NMR spectrum of 2h

¹H NMR spectrum of 2i

S62

-29.700

S68

¹⁹F NMR spectrum of 2n

¹H NMR spectrum of 2p

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 f1 (ppm)

¹³C NMR spectrum of 2s

¹⁹F NMR spectrum of 2s

, ,		-	- , - ,			. , ,								1			 	-		-	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90		-110		-130	-150	-170		-190		-210
												i (pp	m)								

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)

an ini di karana karanga karang

S79

0 -10

10

30 20

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

¹H NMR spectrum of 2w

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

S82

10 (

20

60

50 40 30

)0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹H NMR spectrum of 9

S90

- 1. Ji, Y.-Z.; Li, H.-J.; Zhang, J.-Y.; Wu, Y.-C. Chem. Commun. 2019, 55 (79), 11864-11867.
- 2. Laha, J. K.; Dayal, N. Org. Lett. 2015, 17, 4742-4745.
- 3. Turnu, F.; Luridiana, A.; Cocco, A.; Porcu, S.; Frongia, A.; Sarais, G.; Secci, F. Org. Lett. 2019, 21, 7329-7332.
- 4. Kumar, N.; Maity, A.; Gavit, V. R.; Bisai, A. Chem. Commun. 2018, 54, 9083-9086.
- 5. Ye, L.; Cai, S.-H.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Feng, C.; Loh, T.-P. Org. Lett. 2017, 19, 6164-6167.
- 6. Kim, Y.; Park, Y.; Chang, S. ACS Cent. Sci. 2018, 4, 768-775.
- 7 Du, W.; Gu, Q.; Li. Z.; Yang, D. J. Am. Chem. Soc. 2015, 137, 1130-1135.
- 8 da Silva, G. P.; Ali, A.; da Silva, R. C.; Jiang, H.; Paixao, M. W. Chem. Commun. 2015, 51, 5110.
- 9. H. L. Li; Y. Kuninobu; M. Kanai, Angew. Chem. Int. Ed. 2017, 56, 1495-1499.
- 10. J. Szyling; A. Franczyk; P. Pawluć; B. Marciniec; J. Walkowiak, Org. Biomol. Chem. 2017, 15, 3207-3215.
- 11. Sun, L.; Zhang, X.; Wang, C.; Teng, H.; Ma, J.; Li, Z.; Chen, H.; Jiang, H. Green Chem. 2019, 21, 2732-2738.
- 12. Ye, Y.; Wang, Y.; Liu, P. and Han, F. Chin. J. Chem. 2013, 31, 27-30.
- 13. Wang, X.; Makha, M.; Chen, S.-W.; Zheng, H.; Li, Y. J. Org. Chem. 2019, 84, 6199-6206.
- 14 Y.-C. Hu; D.-W. Ji; C.-Y. Zhao; H. Zheng; Q.-A. Chen, Angew. Chem. Int. Ed. 2019,58, 5438-5442.