Electronic Supporting Information

Deposition of MoSe₂ flakes using cyclic selenides

Jaroslav Charvot,^a Raul Zazpe,^{b,c} Richard Krumpolec,^d Jhonatan Rodriguez-Pereira,^{b,c} David Pavliňák,^d Daniel Pokorný,^a Milan Klikar,^a Veronika Jelínková,^e Jan M. Macak^{b,c} and Filip Bureš^{*a,e}

^aInstitute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.

^bCenter of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. Legií 565, Pardubice, 53002, Czech Republic.

^cCentral European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic.

^dDepartment of Physical Electronics, CEPLANT — R&D Center for Plasma and Nanotechnology Surface Modifications, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137 Brno, Czech Republic

^eThe Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01, České Budějovice, Czech Republic

Table of contents

1.	Syn	thesis	. 2
1	2.	Attempted preparation of 2,2,4,4-tetramethyl-1,3,2,4-diselenadisiletane	. 2
2.	Nuc	lear magnetic resonance spectroscopy	. 3
2	2.1.	¹ H NMR spectra	. 3
2	2.2.	¹³ C NMR spectra	. 5
2	2.3.	²⁹ Si NMR spectra	. 7
2	2.4.	⁷⁷ Se NMR spectra	. 9
3.	GC/	MS records	11
4.	DSC	thermograms	15
5.	5. TGA		
6.	SEM	1	19
7.	Ran	nan spectroscopy	20
8.	XPS		21

1. Synthesis

1.2. Attempted preparation of 2,2,4,4-tetramethyl-1,3,2,4-diselenadisiletane

The title compound was attempted from Me₂SiCl₂ (1.6 ml, 1.6 g, 12.6 mmol) following the Methods A or B as well as from MeSiHCl (1.4 ml, 1.2 g, 12.6 mmol) following the Method C. The crude product is a yellow oil. All three methods provided similar results. Figure S1 shows GC/MS records of the crude reaction mixture using Method C at 100 and 250 °C. Three main products **A**–**C** were identified but the reproducibility of these experiments was rather low. The title compound (**A**) was identified in the crude reaction mixture but all attempts on its purification, including vacuum distillation, crystallization at – 78 °C and sublimation, failed.

Figure S1 GC/MS record of crude reaction mixture during attempted preparation of 2,2,4,4-tetramethyl-1,3,2,4-diselenadisiletane. Method C at 100 (left) and 250 °C (right).

2. Nuclear magnetic resonance spectroscopy

Figure S3 ¹H-NMR (400 MHz, 25 °C, C₆D₆) spectra of 5 (mixture).

Figure S5 ¹H-NMR (400 MHz, 25 °C, C_6D_6) spectra of 7.

2.2. ¹³C NMR spectra

Figure S7 ¹³C-NMR APT (100 MHz, 25 °C, C₆D₆) spectra of 5 (mixture).

Figure S9 ¹³C-NMR APT (100 MHz, 25 °C, C₆D₆) spectra of **7**.

¹H-NMR (400 MHz, 25 °C, C_6D_6) spectra of **7**.

2.3. ²⁹Si NMR spectra

Figure S11 29 Si-NMR (80 MHz, 25 °C, C₆D₆) spectra of 5 (mixture).

Figure S13 29 Si-NMR (80 MHz, 25 °C, C₆D₆) spectra of 7.

2.4. ⁷⁷Se NMR spectra

Figure S15 $^{77}\text{Se-NMR}$ (76 MHz, 25 °C, $C_6D_6)$ spectra of 5 (mixture).

Figure S17 ⁷⁷Se-NMR (76 MHz, 25 °C, C₆D₆) spectra of 7.

3. GC/MS records

Figure S18 GC/MS record of 4.

Abundance

Figure S19 GC/MS record of 5 (mixture).

108.9

87.1

137.0

m/z-->

59.1

331.9

244.8

216.8

2Ż0

167.0 187.8

Figure S20 GC/MS record of 6.

Figure S21 GC/MS record of 7.

4. DSC thermograms

-10080 -60 -40 -20 0 20 40 60 80 100120140160180200220240260280300320340360 Temperature (°C)

Figure S22 DSC curve of 4.

Figure S23 DSC curve of 5 (mixture)

Figure S24 DSC curve of 6.

Figure S25 DSC curve of 7.

Figure S26 TGA curve of 4.

Figure S27 TGA curve of 5 (mixture).

Figure S28 TGA curve of 6.

Figure S29 TGA curve of 7.

6. SEM

Figure S30 Left and central column: SEM top view images of as deposited MoSe₂ at 300°C using Se precursor **6** upon 800 ALD cycles on annealed titanium foil and silicon wafer, respectively, applying constant Mo dose (800 ms) and different Se dosing, namely, 400, 800 and 1200 ms; Right column: the cross-sectional SEM images of the Si wafers corresponding to samples from the central column.

Figure S31 SEM top view images of $MoSe_2$ deposited at 200 and 250°C using Se precursor 6 on annealed titanium foil and silicon wafer (800 ms Se dose) upon 800 ALD cycles.

7. Raman spectroscopy

Figure S32 Raman spectra obtained from $MoSe_2$ deposited at 200 and 250°C using Se precursor 6 upon 800 ALD cycles on annealed titanium foil (800 ms Se dose).

8. XPS

Figure S33 XPS survey spectra of ALD MoSe₂ deposited at 300 °C using Se precursor 6 upon 800 ALD cycles (800 ms Se dose) on different substrates: glass, titanium foil and silicon wafer.

Figure S34 XPS survey spectra of ALD MoSe₂ deposited at 200 and 250 °C using Se precursor 6 upon 800 ALD cycles (800 ms Se dose) on silicon wafer.

Figure 35 XPS high-resolution spectra of Mo 3d (left) and Se 3d (right) corresponding to ALD MoSe₂ (800 ms Se dose) deposited on silicon wafer at 200 and 250 °C upon 800 ALD cycles using Se precursor **6**.