Supplementary information

Lithium-ion attack on yttrium oxide in the presence of copper powder during Li plating in a super-concentrated electrolyte

Tohru Shiga*, Yumi Masuoka, Hiroshi Nozaki, and Nobuko Ohba

Toyota Central Research & Development Laboratories Inc. Yokomichi, Nagakute-city, Aichi-ken, 480-1192 Japan

*Corresponding author. E-mail: e0560@mosk.tytlabs.co.jp

1. Materials

Figure S1. Chemical structures of LiFSA, PNMePh, and VC

Figure S2. XRD pattern for Y₂O₃ powder.

Experimental Electrode

Figure S3. SEM images of the cross section of a $Cu+Y_2O_3$ electrode.

2.2. Electrochemical cell

Figure S4. Photograph and schematic of an electrochemical cell.

Figure S5. The 1st through 3rd cyclic voltammograms for LiFSA/PNMePh super-concentrated electrolyte. The sweep rate was 1 mV/sec.

 Table S1. ⁷Li-NMR measurement parameters

Measurement frequency	155.5080156 MHz
Spectral width	100 kHz
Pulse width	1.0 µm (30°pulse)
Pulse repetition time	12 sec
Observation point	8192 points
Reference material	1M LiCl aquous solution
Temperature	Room temperature
Rotational frequency	0 Hz, 15 Hz
Sample tube	ZrO ₂ , inner diameter 1 mm Length 2.5 mm

 Table S2. XAFS measurement parameters

Experimental facility	Aichi Synchrotron Radiation Center in Japan
Experimental station	BL11S2
Split	Si(111)2Crystal spectroscopy
Absorption end	Y-K absorption end (17038.0 eV)
Detection method	Through the law
Detectors	lon chambers

3. Results

3.1. Li plating behavior for the cell fabricated using only Cu powder

Figure S6. Cu electrode potential-capacity curve for the electrode fabricated using only Cu powder. The samples A,B,C, and D were applied to the EIS measurement.

3.2. EIS results

Figure S7. Equivalent circuit (top) and constant phase elements (bottom) for the three components of the cell using Cu powder electrode.

Figure S8. EIS results for the cell using Cu foil electrode.

3.3. Calculation results

Figure S9. Crystal structure of bulk Y_2O_3 (upper) and $Li_{1.5}Y_2O_3$ (bottom). The dark and light green, and red circles represent yttrium, lithium, and oxygen elements in turn.

	Y_2O_3	$\text{Li}_{1.5}\text{Y}_2\text{O}_3$
Y	2.14	1.62
0	-1.43	-1.52
Li	_	0.85

Table S3. Bader charge (e) for each element in Y₂O₃ and Li_{1.5}Y₂O₃

3.4. Charge-discharge curves for the Cu+Y₂O₃ cells

Figure S10. Charge/discharge curves for $Cu+Y_2O_3$ cells using Li metal electrode between (a) -5 V - 0V, and (b) 0 V - +2 V.

Figure S11. Charge/discharge curves for $Cu+Y_2O_3$ cells using Li-doped LTO (Li₄Ti₅O₁₂) electrode between (a) -5 V - 0V, and (b) 0 V - +2V.

3.5. FE-SEM images

Figure S12. FE-SEM images of electrodeposited metallic lithium at (a) 1000x, and (b) 2000x magnification.

3.6. EDX results

	С	0	F	Cu	Y	Y/O
А	63.7	9.6	4.1	6.4	16.2	1.688
В	79.1	6.1	4.1	0.9	9.8	1.606
С	52.3	11.3	4	8	24.4	2.159
D	70.2	6.6	4.7	2.2	16.3	2.469
Е	76.8	5.7	4.3	0.2	13	2.281
F	81.5	5.7	3.3	0.1	9.3	1.632
G	70.6	7	5.1	0.3	17	2.429
Н	71.8	6.8	5	0.3	16	2.353
1	1	7.1	5.2	65.7	21	2.958

Figure S13. EDX measurement points on the $Cu+Y_2O_3$ electrode after Li plating (top) and the EDX results (bottom).

-	-		SEI 10.0k	√ X5,000		1 µ m
	С	0	F	Cu	Y	Y/O
А	73.8	7.1	2.4	8.1	8.7	1.225
В	83.7	6.4	1.4	3.5	5	0.781
С	84.9	5.8	1.8	0.1	7.5	1.293
D	43.9	5.3	2.6	40.1	8	1.509
Е	37.7	4	1.9	51.4	4.9	1.225
F	59.5	9.5	3.4	9.6	17	1.789
G	72.1	7.6	1.7	5.8	12.8	1.684

Figure S14. EDX measurement points on the $Cu+Y_2O_3$ electrode before Li plating (top) and the EDX results (bottom).

3.7. ⁷Li-NMR results

Figure S15. Waveform separation results for the region near 0 ppm in the ⁷Li-NMR spectrum of a Cu+Y₂O₃ electrode before Li plating.