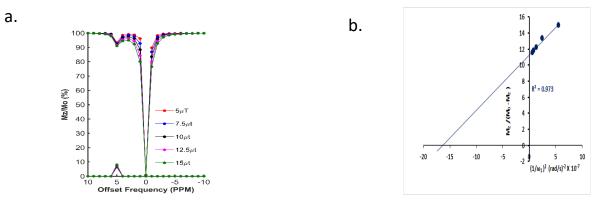
Electronic Supplementary Information

Paracetamol and other Acetanilide analogs as inter-molecular hydrogen bonding assisted diamagnetic CEST MRI Contrast Agents


Subhayan Chakraborty^[a], S. Peruncheralathan^{*[a]} and Arindam Ghosh^{*[a]}

[a] School of Chemical Sciences, National Institute of Science Education and Research ,HBNI, At/PO Jatni, Khurdha 752050 ,Odisha,India

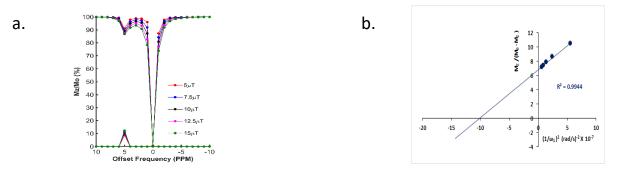
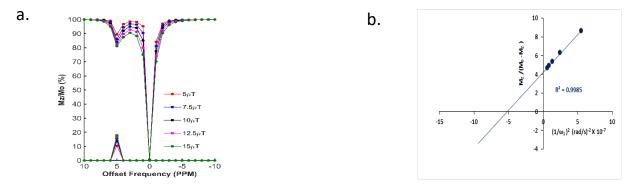
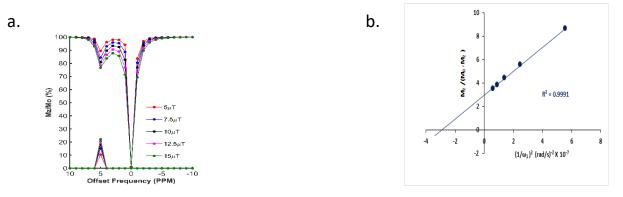

Email: peru@niser.ac.in, aringh@niser.ac.in

Table of Content


- **Figures S1-S9:** (a) Overlaid z-spectra for N-phenylacetamide (1) with changing saturation power at variable temperature (b) Omega plot for calculation of k_{ex}.
- Figures S10-S25: ¹H and ¹³C NMR spectra of compounds 2-9 in DMSO-d₆.
- Figures S26-S32: (a) Overlaid z-spectra of compounds 2-9 at the physiological condition (b) Overlaid z-spectra of 2-9 with changing saturation power (c) Omega plot for calculation of k_{ex} for compound 2-9.
- **Figures S33-38:** a) Overlaid z-spectra for N-(4-hydroxyphenyl) acetamide (9) with changing saturation power at variable pH ranging from 6.8-8.1 (b) Omega plot for calculation of k_{ex}.
- **Figure S39:** Overlaid z-spectra for N-(4-hydroxyphenyl) acetamide (9) with varying pH ranging from 6.8-8.1.


Figure S1: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 298K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

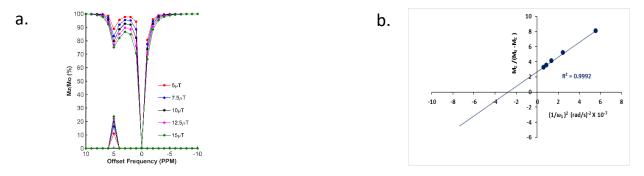
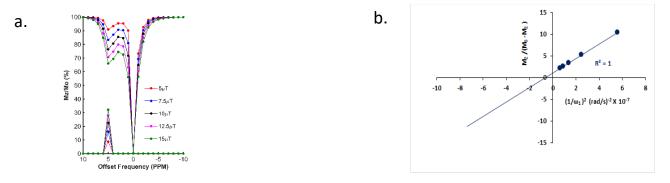
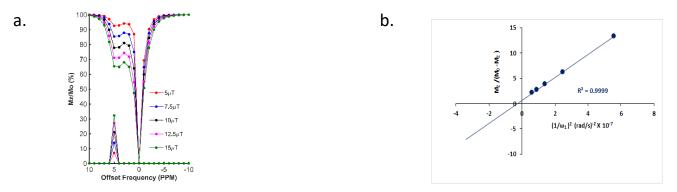

Figure S2: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 303K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S3: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 308K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S4: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 310K (b) Omega plot for exchange rate measurement. The expected linear relationship of $M_z/(M_0-M_z)$ as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S5: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 313K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

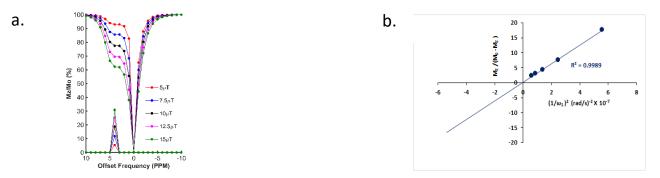

Figure S6: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 318K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S7: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 323K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S8: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 328K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S9: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-phenylacetamide (1) at 333K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation

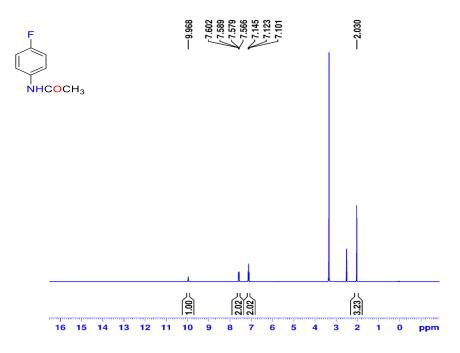


Figure S10: ¹H-NMR spectrum of *N*-(4-fluorophenyl)acetamide (2) in DMSO-d₆ at 298K.

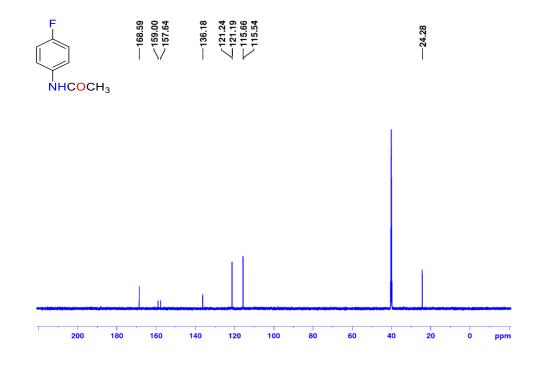
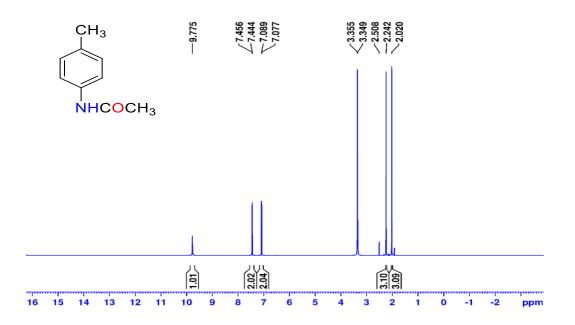
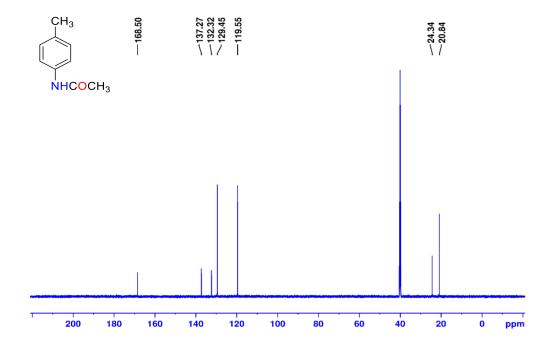




Figure S11: ¹³C NMR spectrum of *N*-(4-fluorophenyl)acetamide (2) in DMSO-d₆ at 298K.

Figure S12: ¹H-NMR spectrum of *N*-(p-tolyl)acetamide (**3**) in DMSO-d₆ at 298K.

Figure S13: ¹³C NMR spectrum of *N*-(p-tolyl)acetamide (**3**) in DMSO-d₆ at 298K.

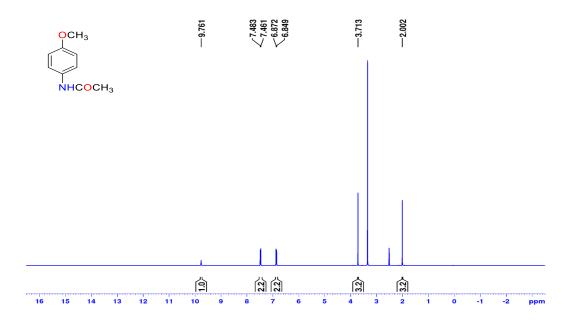


Figure S14: ¹H-NMR spectrum of N-(4-methoxyphenyl)acetamide (4) in DMSO-d₆ at 298K.

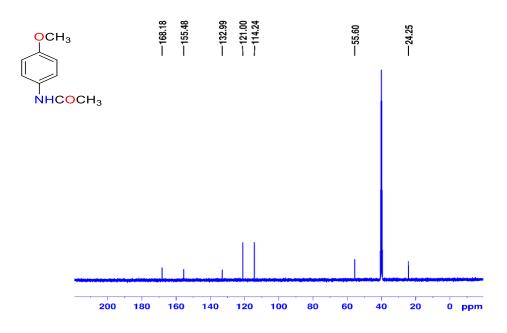
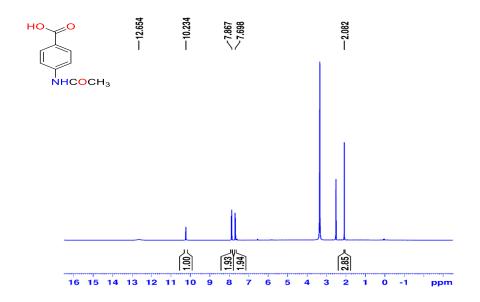



Figure S15: ¹³C NMR spectrum of N-(4-methoxyphenyl)acetamide (4) in DMSO-d₆ at 298K.

Figure S16: ¹H-NMR spectrum of 4-acetamidobenzoic acid (5) in DMSO-d₆ at 298K.

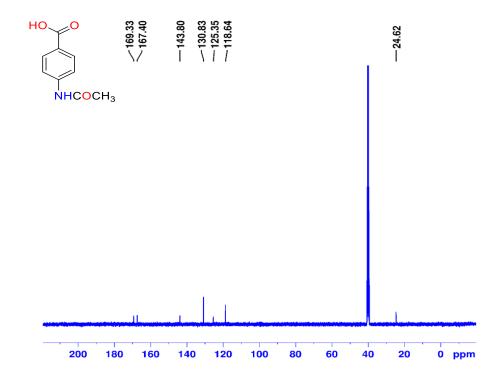


Figure S17: ¹³C NMR spectrum of 4-acetamidobenzoic acid (5) in DMSO-d₆ at 298K.

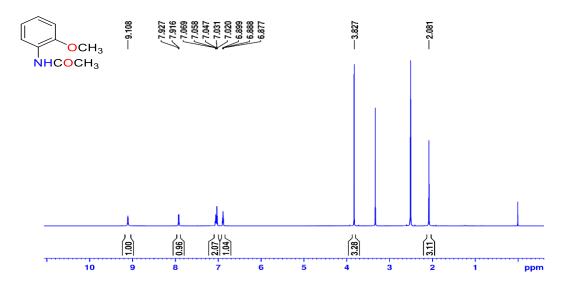


Figure S18: ¹H-NMR spectrum of N-(2-methoxyphenyl) acetamide (6) in DMSO-d₆ at 298K.

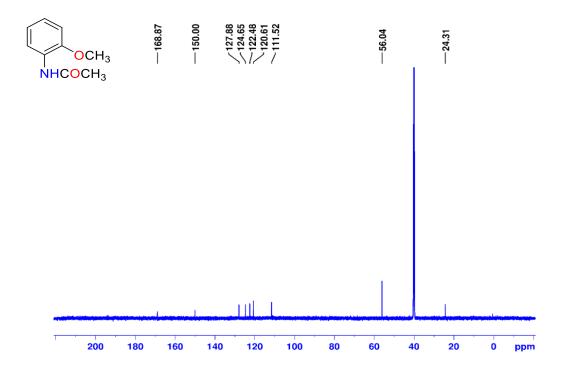


Figure S19: ¹³C NMR spectrum of N-(2-methoxyphenyl) acetamide (6) in DMSO-d₆ at 298K.

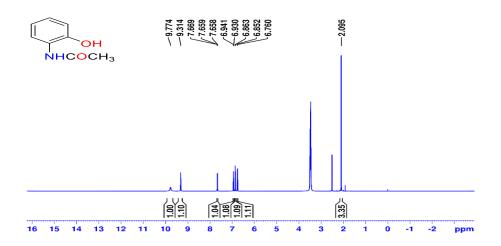


Figure S20: ¹H-NMR spectrum of N-(2-hydroxyphenyl)acetamide (7) in DMSO-d₆ at 298K.

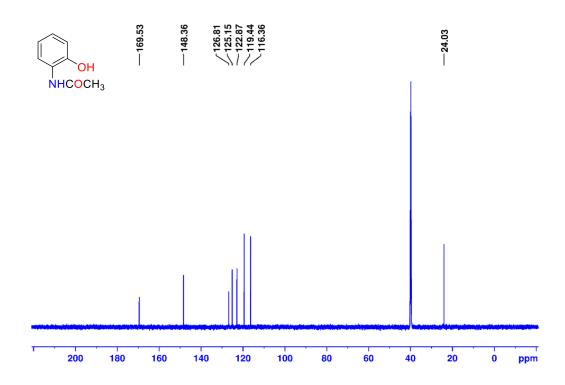


Figure S21: ¹³C NMR spectrum of N-(2-hydroxyphenyl)acetamide (7) in DMSO-d₆ at 298K.

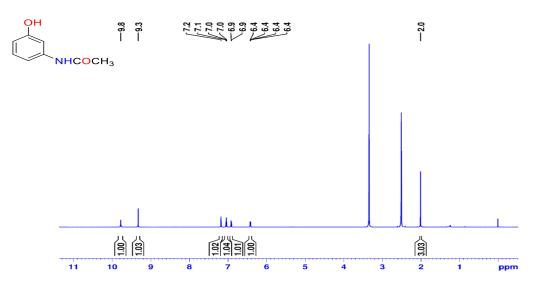


Figure S22: ¹H-NMR spectrum of N-(3-hydroxyphenyl) acetamide (8) in DMSO-d₆ at 298K.

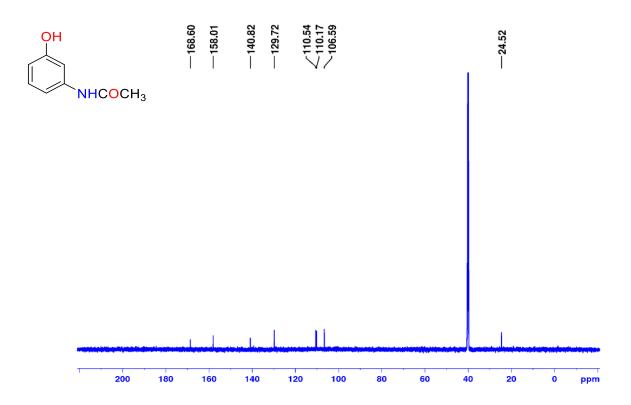


Figure S23: ¹³C NMR spectrum of N-(3-hydroxyphenyl) acetamide (8) in DMSO-d₆ at 298K.

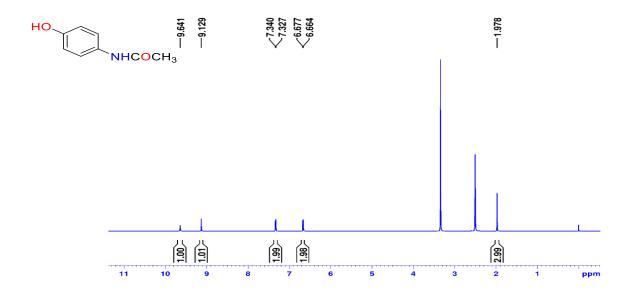
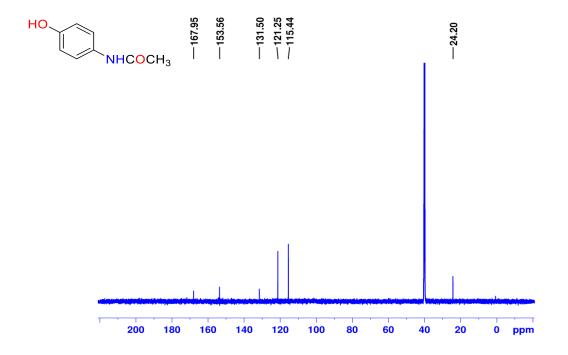
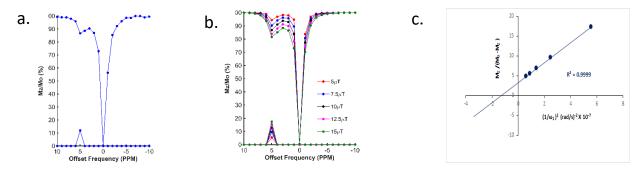
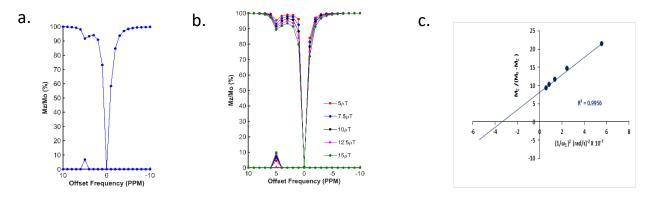
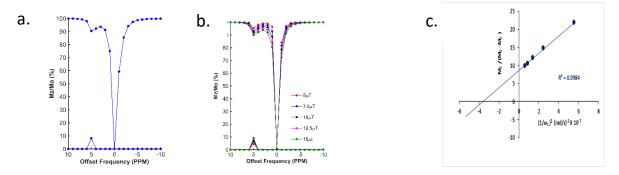
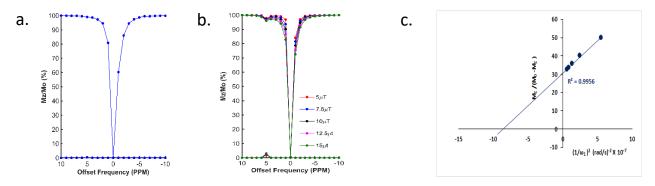
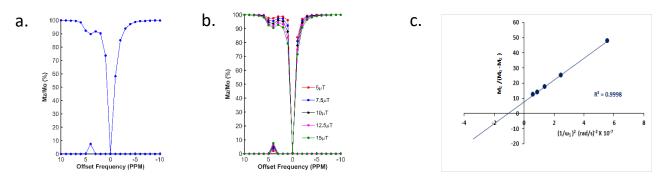


Figure S24: ¹H-NMR spectrum of N-(4-hydroxyphenyl) acetamide (9) in DMSO-d₆ at 298K.


Figure S25:¹³C NMR spectrum of N-(4-hydroxyphenyl) acetamide (9) in DMSO-d₆ at 298K.


Figure S26: (a) z-spectra of 15mM *N*-(4-fluorophenyl)acetamide (**2**) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5μ T to 15μ T for (2) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10^{-7} was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S27: (a) z-spectra of 15mM N-(p-tolyl)acetamide (**3**) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (3) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

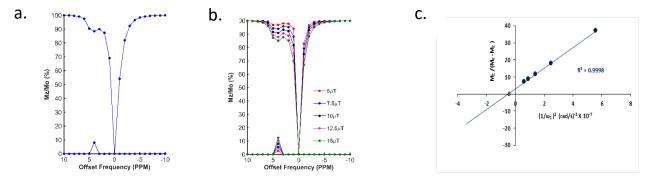
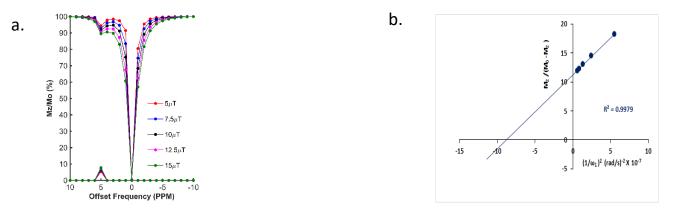
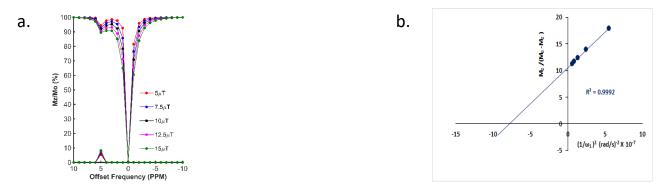
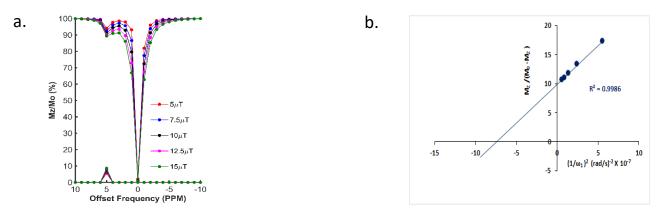
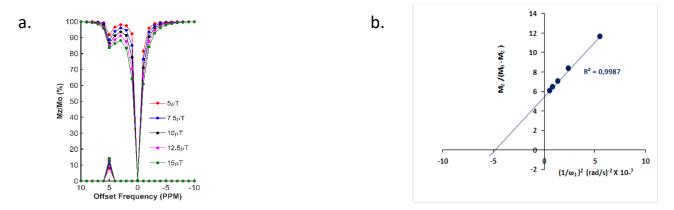

Figure S28: (a) z-spectra of 15mM N-(4-methoxyphenyl)acetamide (4) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (4) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

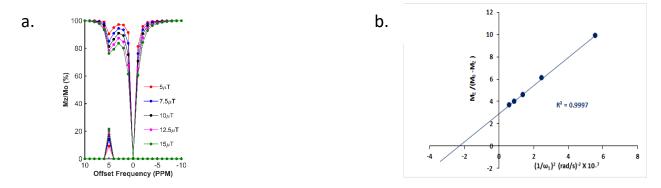
Figure S29: (a) z-spectra of 15mM 4-acetamidobenzoic acid (5) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (5) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

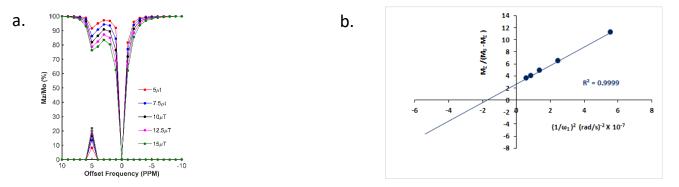

Figure S30: (a) z-spectra of 15mM N-(2-methoxyphenyl)acetamide (6) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (6) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S31: (a) z-spectra of 15mM N-(2-hydroxyphenyl)acetamide (7) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (7) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω 1² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S32: (a) z-spectra of 15mM N-(3-hydroxyphenyl)acetamide (8) at 310K and at pH 7.4 recorded at 9.3T (b) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for (8) (c) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S33: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 6.8. (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S34: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 7.0. (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ¹ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.


Figure S35: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 7.2 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.

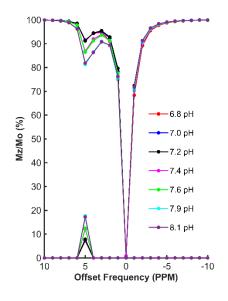

Figure S36: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 7.6 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S37: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 7.9 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S38: (a) Dependence of CEST percentage on saturation field strength ranging from 5 μ T to 15 μ T for N-(4-hydroxyphenyl) acetamide (9) at pH 8.1 .(b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 16.3 T of 15 mM compound in 0.01M PBS buffer. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S39: Dependence of CEST effect of N-(4-hydroxyphenyl) acetamide (9) on pH. Overlaid Z-spectra with pH ranging from 6.8 to 8.1.5 µT RF saturation was applied for 3s to obtain the z-spectra.