Novel synthesis of benzotriazolyl alkyl esters: An Unprecedented CH₂ Insertion

Mohamed Elagawany,^{a,b,c} Lingaiah Maram,^{a,b} Bahaa Elgendy^{*,a,b,d}

^aDepartment of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA ^bCenter for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt ^dChemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt

Table of Contents

Materials and Methods	S2
Experimental Procedures	S2
¹ H and ¹³ C NMR spectra	S11-S71
Crystallographic Details of X-ray single crystal data of 3c	S72

Materials and Methods

All materials were purchased from commercial suppliers and used without further purification. The purities of the final compounds were characterized by high-performance liquid chromatography (LC/MS) using a gradient elution program (Ascentis Express Peptide C18 column, acetonitrile/water 5/95/95/5, 5 min, 0.05% formic acid) and UV detection (254 nM). The purities of final compounds were 95% or greater. NMR spectra was recorded on a Bruker NMR 400 MHz Avance III spectrometer operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts are given in part per million (ppm) relative to tetramethylsilane (TMS), coupling constants *J* are given in Hertz. HPLC-HRMS analyses were performed on reverse phase gradient using Agilent (Santa Clara, CA) 1200 series binary pump (G1312B), waters XTerra MS C₁₈ (3.5 um; 2.1 x 150 mm) + Phenomenex C₁₈ security guard column (2 x 4 mm) using 0.2% acetic acid in H₂O/methanol as mobile phases; wavelength = 254 nm; and mass spectrometry was done with 6220 Agilent (Santa Clara, CA) TOF in electrospray ionization (ESI) mode with positive and negative method in both Profile and Centroid mode.

General Procedure for the Synthesis of Benzotriazolyl Alkyl Esters

Method 1: (compounds 3a, 3b, 5a, 5c, 5d, 5f, 5g, 5i, 5j, 5l-5q, and 6a-6f):

DMAP (0.3 mmol, 1 equiv.) was added to a stirred solution of Acyl-Bt (0.3 mmol, 1 equiv.) in acetonitrile (4 mL) and DCM (1 mL). The reaction mixture was stirred at 60 °C for 5 h. After completion of the reaction determined by TLC, the solvent was evaporated, and the product was purified by flash chromatography using ethyl acetate: Hexanes (1:4) to obtain the desired product in pure form.

Method 2: (compounds 5b, 5e, 5h, and 5k)

DBU (0.3 mmol, 1 equiv.) was added to a stirred solution of Acyl-Bt (0.3 mmol, 1 equiv.) in acetonitrile (4 mL) and DCM (1 mL). The reaction mixture was stirred at 60 $^{\circ}$ C for 5 h. After completion of the reaction determined by TLC, the solvent was evaporated, and the product was purified by flash chromatography using ethyl acetate: Hexanes (1:4) to obtain the desired product in pure form.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl (*tert*-butoxycarbonyl)-*L*-phenylalaninate (3a)

Colorless oil (113 mg, 0.29 mmol, 94%); 1H NMR (400 MHz, CDCl3) δ 8.10 (d, *J* = 8.3 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 7.5 Hz, 2H), 6.78 (d, *J* = 7.5 Hz, 2H), 6.70 (d, *J* = 11.3 Hz, 1H), 6.50 (d, *J* = 11.3 Hz, 1H), 4.96 (d, *J* = 8.2 Hz, 1H), 4.61 (q, *J* = 6.8 Hz, 1H), 2.99 (d, *J* = 6.0 Hz, 2H), 1.39 (s, 9H), 1.29

- 1.21 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 171.4, 155.1, 146.2, 135.0, 132.8, 129.0, 128.6, 128.6, 127.2, 124.7, 120.1, 110.3, 80.4, 68.2, 54.4, 37.8, 28.3. δ. HRMS m/z for C21H24N4O4 [M+Na]+. Calcd 419.168976, found 419.168746.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl-*d*₂ (*tert*-butoxycarbonyl)-*L*-phenylalaninate (3b)

Colorless oil (109 mg, 0.27 mmol, 91%); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.3 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.57 – 7.49 (m, 1H), 7.45 – 7.39 (m, 1H), 7.06 (t, J = 7.4 Hz, 1H), 6.96 (t, J = 7.5 Hz, 2H), 6.78 (d, J = 7.4 Hz, 2H), 4.99 (d, J = 8.2 Hz, 1H), 4.61 (q, J = 6.7 Hz, 1H), 2.99 (d, J = 6.1 Hz, 2H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 155.1, 146.1, 135.0, 132.8, 129.0, 128.6, 128.5, 127.1, 124.7, 120.1, 110.3, 80.3, 54.4, 37.8, 31.6, 28.3. HRMS *m/z* for C₂₁H₂₂D₂N₄O₄ [M+Na]⁺. Calcd 421.181530, found 421.181242.

(S)-1-((1H-Benzo[d][1,2,3]triazol-1-yl)methoxy)-1-oxo-3-phenylpropan-2-aminium trifluoroacetate (3c)

Compound **3a** was dissolved in a mixture of DCM and TFA (1:1) and stirred for 1h. The solvent was evaporated and the residue was crystallized from ethanol: ether (1:5) to obtain the triflate salt as a white needles (99%); HRMS m/z for C₁₆H₁₆N₄O₂ [M+Na]⁺. Calcd 319.116547, found 319.116482.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl benzoate (5a)¹

White microcrystals (71 mg, 0.28 mmol, 93%); mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ ; ¹³C NMR (100 MHz, CDCl₃) δ . 8.08 (d, J = 8.3 Hz, 1H), 8.06 – 8.00 (m, 2H), 7.88 (d, J = 8.3 Hz,

1H), 7.60 – 7.53 (m, 2H), 7.41 (t, *J* = 7.7 Hz, 3H), 6.85 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 146.1, 133.9, 132.9, 130.1, 128.6, 128.5, 128.4, 128.2, 124.6, 120.1, 110.2, 68.3.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 2-methylbenzoate (5b)

Off white microcrystals (57 mg, 0.21 mmol, 71%); mp 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.8 Hz, 1H), 7.89 (t, 2H), 7.57 (t, 1H), 7.41 (q, J = 7.5 Hz, 2H), 7.25 – 7.17 (m, 2H), 6.82 (s, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 146.2, 141.3, 133.0, 132.8, 131.9, 131.1, 128.4, 127.4, 125.9, 124.5, 120.1, 110.1, 68.1, 21.9. HRMS *m/z* for C₁₅H₁₃N₃O₂ [M+Na]⁺. Calcd 290.089998, found 290.089904.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 3-methylbenzoate (5c)

White microcrystals (68 mg, 0.25 mmol, 85%); mp 93-94 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.91 – 7.81 (m, 3H), 7.57 (t, *J* = 8.4 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.31 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.84 (s, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 146.1, 138.5, 134.7, 132.9, 130.6, 128.5, 128.3, 127.2, 124.6, 120.1, 110.2, 68.2, 21.2. HRMS *m/z* for C₁₅H₁₃N₃O₂ [M+Na]⁺. Calcd 290.089998, found 290.089938.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-methylbenzoate (5d)

Off white microcrystals (70 mg, 0.26 mmol, 88%); mp 84-86 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 9.1 Hz, 1H), 7.92 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 7.8 Hz, 1H), 7.56 (t, 1H), 7.41 (t, 1H), 7.21 (d, J = 8.1 Hz, 2H), 6.83 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 146.2, 144.9, 132.9, 130.1, 129.3, 128.4, 125.6, 124.5, 120.1, 110.2, 68.2, 21.7. HRMS *m/z* for C₁₅H₁₃N₃O₂ [M+Na]⁺. Calcd 290.089998, found 290.089941.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 2-(trifluoromethyl)benzoate (5e)

Colorless oil (69%); ¹H NMR (66 mg, 0.21 mmol, 400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 7.0 Hz, 1H), 7.73 (d, J = 7.3 Hz, 1H), 7.64 – 7.56 (m, 3H), 7.46 – 7.41 (m, 1H), 6.85 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 146.2, 132.8, 132.2, 131.9, 131.9, 130.7, 128.6, 127.0, 124.7, 120.2, 110.0, 68.8. HRMS *m*/*z* for C₁₅H₁₀F₃N₃O₂ [M+Na]⁺. Calcd 344.061732, found 344.061538.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 3-(trifluoromethyl)benzoate (5f)

White microcrystals (82 mg, 0.26 mmol, 86%); mp 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 7.9 Hz, 1H), 8.10 (d, *J* = 9.1 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.44 (t, *J* = 9.2 Hz, 1H), 6.88 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 146.2, 133.2, 132.9, 130.5, 130.5, 129.3, 129.3, 128.7, 127.1, 124.7, 120.2, 110.0, 68.5. HRMS *m/z* for C₁₅H₁₀F₃N₃O₂ [M+Na]⁺. Calcd 344.061732, found 344.061717.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-(trifluoromethyl)benzoate (5g)

White microcrystals (84 mg, 0.26 mmol, 88%); mp 88-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.2 Hz, 2H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 6.88 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 146.2, 135.2, 132.8, 131.6, 130.5, 128.7, 125.7, 124.7, 122.0, 120.3, 110.0, 77.4. HRMS *m/z* for C₁₅H₁₀F₃N₃O₂ [M+Na]⁺. Calcd 344.061732, found 344.061521.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 2-methoxybenzoate (5h)

White microcrystals (54 mg, 0.19 mmol, 64%); mp 91-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 9.1 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.41 (t, J = 8.1 Hz, 1H), 7.00 – 6.90 (m, 3H), 6.81 (s, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 160.0, 146.1, 134.8, 134.4, 132.9, 132.2, 128.4, 124.5, 120.2, 120.0, 112.1, 110.4, 68.1, 56.0. HRMS *m*/*z* for C₁₅H₁₃N₃O₃ [M+Na]⁺. Calcd 306.084912, found 306.084901.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 3-methoxybenzoate (5i)

White microcrystals (71 mg, 0.25 mmol, 84%); mp 122-123 °C.¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.42 (t, J = 8.2 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 6.84 (s, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.6, 146.2, 132.9, 129.6, 128.5, 124.6, 122.5, 120.6, 120.1, 114.3, 110.2, 68.4, 55.5. HRMS *m*/*z* for C₁₅H₁₃N₃O₃ [M+Na]⁺. Calcd 306.084912, found 306.084901.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-methoxybenzoate (5j)

Colorless prisms (73 mg, 0.26 mmol, 86%); mp 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 9.0 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 6.89 (d, *J* = 9.0 Hz, 2H), 6.82 (s, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.2, 146.1, 132.9, 132.2, 128.4, 124.5, 120.6, 120.0, 113.9, 110.3, 68.1, 55.5. HRMS *m/z* for C₁₅H₁₃N₃O₃ [M+Na]⁺. Calcd 306.084912, found 306.084792.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 2-nitrobenzoate (5k)

White microcrystals (58 mg, 0.19 mmol, 65%); mp 108-110 °C.¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.70 – 7.60 (m, 4H), 7.46 – 7.43 (m, 1H), 6.83 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 147.9, 146.2, 133.3, 132.9, 132.5, 129.9, 128.7, 126.2, 124.8, 124.2, 120.1, 109.9, 69.4. HRMS *m/z* for C₁₄H₁₀N₄O₄[M+Na]⁺. Calcd 321.059426, found 321.059241.

(1H-Benzo[d][1,2,3]triazol-1-yl)methyl 3-nitrobenzoate (5l)

Colorless needles (79 mg, 0.27 mmol, 88%); mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.46 – 8.34 (m, 2H), 8.09 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.71 – 7.58 (m, 2H), 7.47 – 7.42 (m, 1H), 6.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 148.3, 146.1, 135.6, 132.8, 130.2, 130.0, 128.7, 128.3, 125.0, 124.8, 120.2, 110.0, 68.7. HRMS *m*/*z* for C₁₄H₁₀N₄O₄ [M+Na]⁺. Calcd 321.059426, found 321.059290.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-nitrobenzoate (5m)

White microcrystals (82 mg, 0.28 mmol, 92%); mp 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.20 (m, 4H), 8.11 (d, J = 9.1 Hz, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.61 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 6.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 151.1, 146.2, 133.7, 132.8, 131.3, 128.8, 124.8, 123.7, 120.3, 109.9, 68.8. HRMS *m*/*z* for C₁₄H₁₀N₄O₄ [M+Na]⁺. Calcd 321.059426, found 321.059083.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-bromobenzoate (5n)

White microcrystals (88 mg, 0.27 mmol, 89%); mp 117-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.91 – 7.84 (m, 3H), 7.61 – 7.54 (m, 3H), 7.43 (t, J = 7.7 Hz, 1H), 6.84 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 146.2, 132.8, 132.0, 131.5, 129.3, 128.6, 127.3, 124.7, 120.2, 110.1, 68.4. HRMS *m*/*z* for C₁₄H₁₀BrN₃O₂ [M+Na]⁺. Calcd 353.984860, found 353.984711.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 4-bromo-3,5-dimethoxybenzoate (50)

White microcrystals (105 mg, 0.27 mmol, 90%); mp 197-198 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.9 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.23 (s, 2H), 6.85 (s, 2H), 3.92 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 157.2, 146.2, 132.9, 128.6, 128.3, 124.7, 120.2, 110.2, 108.1, 105.8, 68.4, 56.7. HRMS *m*/*z* for C₁₆H₁₄BrN₃O₄ [M+Na]⁺. Calcd 414.005990, found 414.005887.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 5-chloro-2-methoxybenzoate (5p)

White microcrystals (71 mg, 0.22 mmol, 75%); mp 135-137 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 2.7 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.46 – 7.39 (m, 2H), 6.89 (d, J = 8.9 Hz, 1H), 6.80 (s, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 158.5, 146.1, 134.4, 132.9, 131.7, 128.5, 125.3, 124.6, 120.1, 118.9, 113.5, 110.3, 68.3, 56.3. HRMS *m*/*z* for C₁₅H₁₂ClN₃O₃ [M+Na]⁺. Calcd 340.045940, found 340.045806.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl pyrazine-2-carboxylate (5q)

White microcrystals (62 mg, 0.24 mmol, 81%); mp 116-118 °C.¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.78 (d, J = 2.3 Hz, 1H), 8.76 – 8.69 (m, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 6.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 148.4, 146.6, 146.1, 144.7, 142.0, 132.8, 128.7, 124.7, 120.1, 110.1, 69.0. HRMS *m/z* for C₁₂H₉N₅O₂ [M+Na]⁺. Calcd 278.064846, found 278.064691.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl acetate (6a)¹

Colorless oil (54 mg, 0.28 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ ; ¹³C NMR (100 MHz, CDCl₃) δ . δ 8.07 (dd, J = 8.4, 1.1 Hz, 1H), 7.78 (dd, J = 8.4, 1.2 Hz, 1H), 7.60 – 7.51 (m, 1H), 7.46 – 7.37 (m, 1H), 6.59 (s, 2H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 146.1, 132.8, 128.4, 124.6, 120.1, 110.1, 67.8, 20.6.

(1H-Benzo[d][1,2,3]triazol-1-yl)methyl propionate (6b)

Colorless oil (56 mg, 0.27 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 8.1 Hz, 1H), 7.42 (t, J = 8.1 Hz, 1H), 6.60 (s, 2H), 2.38 (q, J = 7.5 Hz, 2H), 1.13 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 146.1, 132.8, 128.4, 124.5, 120.1, 110.1, 67.7, 27.2, 8.7. HRMS *m*/*z* for C₁₀H₁₁ClN₃O₂ [M+Na]⁺. Calcd 228.074348, found 228.074270.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl 2-phenylacetate (6c)

Colorless oil (70 mg, 0.26 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ s; ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 146.1, 132.7, 129.2, 128.7, 128.4, 127.5, 124.6, 120.1, 110.0, 68.2, 40.8.. HRMS *m/z* for C₁₅H₁₃N₃O₂ [M+Na]⁺. Calcd 290.089998, found 290.089896.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl adamantane-1-carboxylate (6d)

White microcrystals (85 mg, 0.27 mmol, 91%); mp 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 6.7 Hz, 1H), 7.41 (t, J = 6.7 Hz, 1H), 6.59 (s, 2H), 2.04 – 1.94 (m, 3H), 1.89 – 1.81 (m, 6H), 1.73 – 1.60 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 146.1, 132.7, 128.4, 124.5, 120.1, 110.0, 68.0, 40.9, 38.4, 36.2, 27.7. HRMS m/z for C₁₈H₂₁N₃O₂ [M+Na]⁺. Calcd 334.152598, found 334.152533.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl ((benzyloxy)carbonyl)-*L*-phenylalaninate (6e)

Colorless oil (114 mg, 0.27 mmol, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.58 – 7.26 (m, 7H), 7.12 – 6.89 (m, 3H), 6.87 – 6.62 (m, 3H), 6.51 (d, J = 11.2 Hz, 1H), 5.18 (d, J = 7.4 Hz, 1H), 5.07 (s, 2H), 4.79 – 4.64 (m, 1H), 3.02 (d, J = 5.7 Hz,

2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 155.6, 146.1, 136.0, 134.7, 132.8, 128.9, 128.6, 128.6, 128.5, 128.3, 128.1, 127.1, 124.7, 120.1, 110.1, 68.2, 67.2, 54.7, 37.7. HRMS *m*/*z* for C₂₄H₂₂N₄O₄ [M+Na]⁺. Calcd 453.153326, found 453.152977.

(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)methyl ((benzyloxy)carbonyl)-*L*-valinate (6f)

Colorless oil (104 mg, 0.27 mmol, 91%); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.33 (q, J = 8.8 Hz, 4H), 6.70 (d, J = 11.2 Hz, 1H), 6.54 (d, J = 11.1 Hz, 1H), 5.32 (d, J = 8.8 Hz, 1H), 5.07 (s, 2H), 4.32 (dd, J = 8.8, 4.8 Hz, 1H), 2.14 – 2.00 (m, 1H), 0.82 (d, J = 6.8 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 156.2, 146.0, 136.0, 132.6, 128.5, 128.3, 128.1, 124.7, 120.2, 109.9, 68.3, 67.2, 58.9, 30.9, 18.8. HRMS *m*/*z* for C₂₀H₂₂N₄O₄ [M+Na]⁺. Calcd 405.153326, found 405.153055.

References:

1 A. R. Katritzky, W. Kuzmierkiewicz, B. Rachwal, S. Rachwal and J. Thomson, The chemistry of Nsubstituted benzotriazoles. Part 5. Reactions of benzotriazole with aldehydes and thionyl chloride—formation of (benzotriazol-1-yl)-1-chloroalkanes and bis(benzotriazolyl)alkanes, J. Chem. Soc., Perkin Trans. 1, 1987, 811–817.

Figure S1. ¹H NMR spectra of 3a.

Figure S2. ¹³C NMR spectra of 3a.

Figure S3. ¹H-¹H COSY of 3a.

Figure S4. ¹H-¹³C HMQC of **3a**.

Figure S5. ¹H-¹³C HMBC of **3a**.

Figure S6. ¹H NMR of 3b.

Figure S7. ¹³C NMR of **3b**.

Figure S8. ¹H-¹H COSY of 3b.

Figure S9. ¹H-¹³C HMQC of **3b**.

Figure S11. ¹³C NMR of 5a.

Figure S12. ¹H-¹H COSY of 5a.

Figure S13. Expansion of ¹H-¹³C HMQC of **5**a.

Figure S14. Expansion of ¹H-¹³C HMBC of **5**a.

Figure S15. ¹H NMR of 5b.

Figure S16. ¹³C NMR of 5b.

Figure S17. ¹H NMR of 5c.

Figure S18. ¹³C NMR of 5c.

Figure S19. ¹H NMR of 5d.

Figure S21. ¹H NMR of 5e.

Figure S22. ¹³C NMR of 5e.

Figure S23. ¹H NMR of 5f.

Figure S24. ¹³C NMR of 5f.

Figure S25. ¹H NMR of 5g.

Figure S26. ¹³C NMR of 5g.

Figure S27. ¹H NMR of 5h.

Figure S28. ¹³C NMR of 5h.

Figure S29. ¹H NMR of 5i.

Figure S30. ¹³C NMR of 5i.

Figure S31. ¹H NMR of 5j.

Figure S32. ¹³C NMR of 5j.

Figure S33. ¹H NMR of 5k.

Figure S34. ¹³C NMR of 5k.

Figure S35. ¹H NMR of 5l.

Figure S36. ¹³C NMR of 5l.

Figure S37. ¹H NMR of 5m.

Figure S38. ¹³C NMR of 5m.

Figure S39. ¹H NMR of 5n.

Figure S40. ¹³C NMR of 5n.

Figure S41. ¹H NMR of 50.

Figure S42. ¹³C NMR of **50**.

Figure S43. ¹H NMR of 5p.

Figure S44. ¹³C NMR of 5p.

Figure S45. ¹H NMR of 5q.

Figure S47. ¹H NMR of 6a.

Figure S48. ¹³C NMR of 6a.

Figure S49. ¹H-¹H COSY of 6a.

Figure S50. ¹H-¹³C HMQC of 6a.

Figure S51. ¹H-¹³C HMBC of 6a.

Figure S52. ¹H NMR of 6b.

Figure S53. ¹³C NMR of 6b.

Figure S54. ¹H NMR of 6c.

Figure S55. ¹³C NMR of 6c.

Figure S56. ¹H NMR of 6d.

Figure S57. ¹³C NMR of 6d.

Figure S58. ¹H NMR of 6e.

Figure S59. ¹³C NMR of 6e.

Figure S60. ¹H NMR of 6f.

Figure S61. ¹³C NMR of 6f.

Crystallography

Crystals of appropriate dimension were obtained by slow evaporation of **3c**. A crystals of approximate dimensions 0.576 x 0.084 x 0.043 mm³ was mounted on a MiTeGen cryoloop in random orientations. Preliminary examination and data collection were performed using a Bruker X8 Kappa ApexII Charge Coupled Device (CCD) Detector system single crystal X-Ray diffractometer equipped with an Oxford Cryostream LT device. All data were collected using graphite monochromated Mo K α radiation (λ = 0.71073 Å) from a fine focus sealed tube X-Ray source. Preliminary unit cell constants were determined with a set of 36 narrow frame scans. The data sets consist of combinations of ϖ and ϕ scan frames with scan width of 0.5° and counting time of 20 seconds/frame at a crystal to detector distance of 4.0 cm. The collected frames were integrated using an orientation matrix determined from the narrow frame scans. Apex II and SAINT software packages were used for data collection and data integration.¹ Analysis of the integrated data did not show any decay. Final cell constants were determined by global refinement of reflections harvested from the complete data set. Collected data were corrected for systematic errors using SADABS based on the Laue symmetry using equivalent reflections.¹

Crystal data and intensity data collection parameters are listed in Table S1. Structure solution and refinement were carried out using the SHELXTL- PLUS software package.² The structure was solved and refined successfully in the triclinic space group P-1. Full matrix least-squares refinements were carried out by minimizing $\Sigma w(F_0^2 - F_c^2)^2$. The non-hydrogen atoms were refined anisotropically to convergence. All hydrogen atoms were treated using appropriate riding model (AFIX m3). The final residual values and structure refinement parameters are listed in Table S2.
Complete listings of positional and isotropic displacement coefficients for hydrogen atoms, anisotropic displacement coefficients for the non-hydrogen atoms are listed as supplementary material (Tables S2-S7, Supplementary materials). Table of calculated and observed structure factors are available in electronic format. **CCDC 1998062** contains the supplementary crystallographic data for this paper.

References:

1. Bruker Analytical X-Ray, Madison, WI, 2016

2. G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A. 64 (2008) 112–122. doi:10.1107/S0108767307043930.

Identification code	e9218/lt/x8		
Empirical formula	$C_{18}H_{17}F_3N_4O_4$		
Formula weight	410.35		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /n		
Unit cell dimensions	a = 16.983(3) Å	α= 90°.	
	b = 5.7953(9) Å	β=111.694(11)°.	
	c = 19.334(3) Å	$\gamma = 90^{\circ}$.	
Volume	1768.1(5) Å ³		
Ζ	4		
Density (calculated)	1.542 Mg/m ³		
Absorption coefficient	0.131 mm ⁻¹		
F(000)	848		
Crystal size	0.576 x 0.084 x 0.043 mm ³		
Theta range for data collection	2.008 to 25.427°.		
Index ranges	-20≤h≤20, -6≤k≤6, -23≤l≤23		
Reflections collected	12882		
Independent reflections	3252 [R(int) = 0.140]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9281 and 0.7637		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3252 / 0 / 263		
Goodness-of-fit on F ²	1.008		
Final R indices [I>2sigma(I)]	R1 = 0.0655, $wR2 = 0.1408$		
R indices (all data)	R1 = 0.1562, WR2 = 0.1787		
Largest diff. peak and hole	0.343 and -0.388 e.Å ⁻³		

Table S1. Crystal data and structure refinement for be9218.

	х	у	Z	U(eq)
F(1)	8481(2)	4689(5)	5097(2)	40(1)
F(2)	9426(2)	2970(4)	4799(2)	33(1)
F(3)	8765(2)	5893(4)	4170(2)	39(1)
O(3)	7967(2)	421(5)	4277(2)	27(1)
O(4)	7552(2)	3101(5)	3383(2)	24(1)
C(17)	8669(3)	3983(8)	4523(3)	26(1)
C(18)	7989(3)	2345(7)	4016(2)	18(1)
O(1)	6206(2)	4682(5)	2026(2)	24(1)
O(2)	5076(2)	7051(5)	1616(2)	25(1)
N(1)	7177(2)	7760(6)	2998(2)	19(1)
N(2)	4100(2)	3967(7)	1359(2)	29(1)
N(3)	4404(3)	1977(7)	1735(2)	38(1)
N(4)	3815(3)	1029(7)	1937(2)	41(1)
C(1)	5729(3)	6916(8)	3570(3)	23(1)
C(2)	4999(3)	5573(8)	3311(3)	29(1)
C(3)	4901(3)	3691(9)	3705(3)	37(1)
C(4)	5531(3)	3101(9)	4366(3)	40(1)
C(5)	6269(3)	4411(9)	4633(3)	36(1)
C(6)	6364(3)	6303(8)	4236(3)	29(1)
C(7)	5826(3)	8950(7)	3126(2)	22(1)
C(8)	6273(3)	8425(7)	2589(2)	19(1)
C(9)	5872(3)	6470(8)	2056(2)	19(1)
C(10)	4612(3)	5336(8)	1074(2)	27(1)
C(11)	3288(3)	4335(8)	1316(3)	30(1)
C(12)	2687(3)	6053(9)	994(3)	36(1)
C(13)	1920(3)	5749(7)	1052(3)	23(1)
C(14)	1732(3)	3879(8)	1419(3)	32(1)
C(15)	2320(3)	2127(9)	1763(3)	35(1)
C(16)	3116(3)	2451(8)	1696(3)	31(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for be9218. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

.329(5) .331(5) .341(5) .231(5) .252(5) .537(6) .193(5) .347(5) .448(5) .495(5) .9100
.331(5) .341(5) .231(5) .252(5) .537(6) .193(5) .347(5) .448(5) .495(5) .9100
.341(5) .231(5) .252(5) .537(6) .193(5) .347(5) .448(5) .495(5) .9100
.231(5) .252(5) .537(6) .193(5) .347(5) .448(5) .495(5) .9100
.252(5) .537(6) .193(5) .347(5) .448(5) .495(5) .9100
.537(6) .193(5) .347(5) .448(5) .495(5) .9100
.193(5) .347(5) .448(5) .495(5) .9100 .9100
.347(5) .448(5) .495(5) .9100 .9100
.448(5) .495(5) .9100 .9100
.495(5) 9.9100 9.9100
0.9100 0.9100
.9100
0100
.9100
.359(5)
.368(6)
.428(6)
.321(6)
.377(6)
.386(6)
.392(6)
.502(6)
.376(7)
.9500
.373(7)
.9500
.391(7)
.9500
.381(7)
.9500
.9500
.527(6)
.9900
.9900
.514(6)

Table S3. Bond lengths [Å] and angles [°] for be9218.

C(8)-H(8)	1.0000
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(12)	1.397(6)
C(11)-C(16)	1.406(7)
C(12)-C(13)	1.360(7)
С(12)-Н(12)	0.9500
C(13)-C(14)	1.394(6)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.406(7)
C(14)-H(14)	0.9500
C(15)-C(16)	1.418(7)
C(15)-H(15)	0.9500
F(1)-C(17)-F(2)	107.2(4)
F(1)-C(17)-F(3)	106.4(4)
F(2)-C(17)-F(3)	106.7(4)
F(1)-C(17)-C(18)	111.5(4)
F(2)-C(17)-C(18)	111.7(4)
F(3)-C(17)-C(18)	112.9(4)
O(3)-C(18)-O(4)	128.4(4)
O(3)-C(18)-C(17)	115.3(4)
O(4)-C(18)-C(17)	116.2(4)
C(9)-O(2)-C(10)	115.8(3)
C(8)-N(1)-H(1A)	109.5
C(8)-N(1)-H(1B)	109.5
H(1A)-N(1)-H(1B)	109.5
C(8)-N(1)-H(1C)	109.5
H(1A)-N(1)-H(1C)	109.5
H(1B)-N(1)-H(1C)	109.5
N(3)-N(2)-C(11)	109.9(4)
N(3)-N(2)-C(10)	120.8(4)
C(11)-N(2)-C(10)	129.3(4)
N(4)-N(3)-N(2)	109.4(4)
N(3)-N(4)-C(16)	107.7(4)
C(6)-C(1)-C(2)	118.3(5)

C(6)-C(1)-C(7)	121.3(4)
C(2)-C(1)-C(7)	120.3(4)
C(3)-C(2)-C(1)	121.2(5)
C(3)-C(2)-H(2)	119.4
C(1)-C(2)-H(2)	119.4
C(4)-C(3)-C(2)	120.1(5)
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	119.6(5)
C(3)-C(4)-H(4)	120.2
C(5)-C(4)-H(4)	120.2
C(6)-C(5)-C(4)	120.1(5)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(5)-C(6)-C(1)	120.6(5)
C(5)-C(6)-H(6)	119.7
C(1)-C(6)-H(6)	119.7
C(1)-C(7)-C(8)	114.8(4)
C(1)-C(7)-H(7A)	108.6
C(8)-C(7)-H(7A)	108.6
C(1)-C(7)-H(7B)	108.6
C(8)-C(7)-H(7B)	108.6
H(7A)-C(7)-H(7B)	107.5
N(1)-C(8)-C(9)	106.5(3)
N(1)-C(8)-C(7)	111.3(3)
C(9)-C(8)-C(7)	113.6(4)
N(1)-C(8)-H(8)	108.5
C(9)-C(8)-H(8)	108.5
C(7)-C(8)-H(8)	108.5
O(1)-C(9)-O(2)	124.9(4)
O(1)-C(9)-C(8)	125.5(4)
O(2)-C(9)-C(8)	109.7(4)
N(2)-C(10)-O(2)	110.4(4)
N(2)-C(10)-H(10A)	109.6
O(2)-C(10)-H(10A)	109.6
N(2)-C(10)-H(10B)	109.6

109.6
108.1
133.9(5)
104.3(4)
121.8(5)
115.8(5)
122.1
122.1
123.2(5)
118.4
118.4
123.1(5)
118.5
118.5
113.3(5)
123.3
123.3
108.8(5)
128.5(5)
122.6(5)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	45(2)	44(2)	25(2)	-20(1)	5(1)	-4(1)
F(2)	20(1)	32(2)	34(2)	7(1)	-4(1)	5(1)
F(3)	34(2)	24(2)	41(2)	15(1)	-8(1)	-7(1)
O(3)	39(2)	18(2)	18(2)	4(2)	3(2)	0(2)
O(4)	27(2)	21(2)	15(2)	0(2)	0(1)	1(1)
C(17)	32(3)	23(3)	17(2)	2(2)	0(2)	1(2)
C(18)	24(2)	15(2)	14(2)	-5(2)	6(2)	2(2)
O(1)	25(2)	22(2)	17(2)	-4(1)	1(1)	2(2)
O(2)	22(2)	24(2)	20(2)	-7(2)	-2(1)	-2(1)
N(1)	19(2)	17(2)	13(2)	-2(2)	-2(2)	-4(2)
N(2)	26(2)	26(2)	24(2)	2(2)	-1(2)	1(2)
N(3)	44(3)	27(2)	31(2)	3(2)	1(2)	-1(2)
N(4)	48(3)	32(3)	32(3)	4(2)	1(2)	0(2)
C(1)	23(2)	29(3)	22(2)	-9(2)	13(2)	0(2)
C(2)	23(3)	35(3)	29(3)	-7(2)	10(2)	0(2)
C(3)	41(3)	38(3)	37(3)	-9(3)	20(3)	-7(3)
C(4)	61(4)	32(3)	38(3)	1(3)	31(3)	-2(3)
C(5)	36(3)	44(3)	25(3)	3(3)	7(2)	1(3)
C(6)	31(3)	34(3)	21(3)	0(2)	6(2)	-6(2)
C(7)	26(2)	23(3)	13(2)	-3(2)	2(2)	1(2)
C(8)	19(2)	23(2)	12(2)	-4(2)	0(2)	2(2)
C(9)	21(2)	21(3)	12(2)	-1(2)	3(2)	-6(2)
C(10)	32(3)	24(3)	19(2)	-4(2)	0(2)	-5(2)
C(11)	33(3)	26(3)	26(3)	0(2)	3(2)	0(2)
C(12)	38(3)	30(3)	29(3)	7(2)	2(2)	7(3)
C(13)	25(3)	18(3)	30(3)	3(2)	15(2)	5(2)
C(14)	35(3)	28(3)	35(3)	-9(3)	16(2)	-3(2)
C(15)	36(3)	30(3)	40(3)	-13(3)	15(3)	-5(3)
C(16)	35(3)	28(3)	23(3)	-2(2)	1(2)	1(2)

Table S4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for be9218. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	у	Z	U(eq)
H(1A)	7474	7946	2694	22
H(1B)	7204	6258	3142	22
H(1C)	7405	8673	3407	22
H(2)	4560	5961	2853	35
H(3)	4396	2800	3521	45
H(4)	5464	1805	4640	48
H(5)	6709	4002	5088	44
H(6)	6869	7194	4422	35
H(7A)	6148	10167	3476	27
H(7B)	5256	9576	2838	27
H(8)	6260	9846	2291	23
H(10A)	4246	6112	610	33
H(10B)	5015	4330	954	33
H(12)	2807	7353	750	43
H(13)	1490	6866	833	28
H(14)	1181	3783	1437	38
H(15)	2195	854	2014	42

Table S5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for be9218.

Table S6. Torsion angles [°] for be9218.

F(1)-C(17)-C(18)-O(3)	-70.9(5)
F(2)-C(17)-C(18)-O(3)	49.0(6)
F(3)-C(17)-C(18)-O(3)	169.3(4)
F(1)-C(17)-C(18)-O(4)	111.6(5)
F(2)-C(17)-C(18)-O(4)	-128.5(4)
F(3)-C(17)-C(18)-O(4)	-8.1(6)
C(11)-N(2)-N(3)-N(4)	0.2(5)
C(10)-N(2)-N(3)-N(4)	-179.8(4)
N(2)-N(3)-N(4)-C(16)	-0.9(5)
C(6)-C(1)-C(2)-C(3)	0.6(7)
C(7)-C(1)-C(2)-C(3)	179.4(4)
C(1)-C(2)-C(3)-C(4)	-0.3(8)
C(2)-C(3)-C(4)-C(5)	-0.2(8)
C(3)-C(4)-C(5)-C(6)	0.4(8)
C(4)-C(5)-C(6)-C(1)	-0.2(8)
C(2)-C(1)-C(6)-C(5)	-0.3(7)
C(7)-C(1)-C(6)-C(5)	-179.1(5)
C(6)-C(1)-C(7)-C(8)	86.4(5)
C(2)-C(1)-C(7)-C(8)	-92.4(5)
C(1)-C(7)-C(8)-N(1)	-65.6(5)
C(1)-C(7)-C(8)-C(9)	54.5(5)
C(10)-O(2)-C(9)-O(1)	0.0(6)
C(10)-O(2)-C(9)-C(8)	179.9(4)
N(1)-C(8)-C(9)-O(1)	5.8(6)
C(7)-C(8)-C(9)-O(1)	-117.0(5)
N(1)-C(8)-C(9)-O(2)	-174.1(4)
C(7)-C(8)-C(9)-O(2)	63.1(5)
N(3)-N(2)-C(10)-O(2)	-91.4(5)
C(11)-N(2)-C(10)-O(2)	88.7(5)
C(9)-O(2)-C(10)-N(2)	95.3(4)
N(3)-N(2)-C(11)-C(12)	-179.3(5)
C(10)-N(2)-C(11)-C(12)	0.7(9)
N(3)-N(2)-C(11)-C(16)	0.6(5)
C(10)-N(2)-C(11)-C(16)	-179.5(4)

N(2)-C(11)-C(12)-C(13)	177.8(5)
C(16)-C(11)-C(12)-C(13)	-2.0(7)
C(11)-C(12)-C(13)-C(14)	1.2(7)
C(12)-C(13)-C(14)-C(15)	0.0(8)
C(13)-C(14)-C(15)-C(16)	-0.3(7)
N(3)-N(4)-C(16)-C(11)	1.2(5)
N(3)-N(4)-C(16)-C(15)	177.9(5)
N(2)-C(11)-C(16)-N(4)	-1.1(5)
C(12)-C(11)-C(16)-N(4)	178.8(4)
N(2)-C(11)-C(16)-C(15)	-178.0(5)
C(12)-C(11)-C(16)-C(15)	1.9(7)
C(14)-C(15)-C(16)-N(4)	-176.9(5)
C(14)-C(15)-C(16)-C(11)	-0.6(7)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)O(4)#1	0.91	2.07	2.879(5)	147.5
N(1)-H(1A)O(1)#1	0.91	2.33	2.978(5)	128.0
N(1)-H(1B)O(4)	0.91	1.93	2.811(4)	163.5
N(1)-H(1C)O(3)#2	0.91	1.89	2.800(4)	175.0
N(1)-H(1C)O(4)#2	0.91	2.58	3.192(4)	125.1
C(7)-H(7B)N(3)#2	0.99	2.51	3.368(6)	144.9
C(7)-H(7B)N(4)#2	0.99	2.57	3.549(6)	172.4
C(10)-H(10B)F(2)#3	0.99	2.47	3.045(5)	116.4
C(12)-H(12)F(1)#4	0.95	2.63	3.556(6)	165.2

Table S7. Hydrogen bonds for be9218 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+1/2 #2 x,y+1,z #3 x-1/2,-y+1/2,z-1/2 #4 x-1/2,-y+3/2,z-1/2 Projection view with 50% probability ellipsoids:

