Supplementary information

Improving the performance of quantum-dot light-emitting diodes via organic-inorganic hybrid hole injection layer

Jae Seung Shin^{a,b}, Tae Yeon Kim^{a,b}, Su Been Heo^{a,b}, Jong-Am Hong^c, Yongsup Park^{c,d} and Seong Jun Kang^{a,b,*}

^a Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea

^b Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University,

Yongin 17104, Republic of Korea

^c Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.

^d Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.

*Corresponding author: Tel: +82-31-201-3324 E-mail: junkang@khu.ac.kr (S. J. Kang)

Figure S1. Structural formulas of the (a) PEDOT:PSS and (b) vanadium(V) triisopropoxide oxide.

Figure S2. Tauc's plot of the TFB film from UV–vis transmittance spectra. Where α is the absorption coefficient. It can be inferred that the band gap (E_g) is about 2.91 eV.