In silico studies of ASEM analogues targeting α7-nAChR and experimental verification

Yang Zhou^{*a*}, Guanglin Kuang^{*b*}, Junhao Li^{*b*}, Christer Halldin^{*c*}, Agneta Nordbergc^{*d*,*e*}, Bengt

Långström^f, Yaoquan Tu^b, and Hans Ågren^{a,g*}

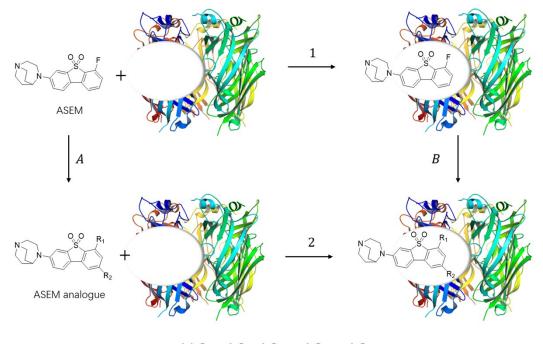
^aDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

^bDivision of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH),

AlbaNova University Center, S-106 91, Stockholm, Sweden. E-mail: hagren@kth.se

^cKarolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, 171 76, Stockholm,

Sweden


^dDepartment of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer

Research, Neo 141 84 Stockholm and eTheme Aging Karolinska University Hospital, S-141 86, Stockholm, Sweden

^fDepartment of Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden

^gCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China

Supporting Information

 $\Delta\Delta G = \Delta G_2 - \Delta G_1 = \Delta G_B - \Delta G_A$

Figure S1. Illustration of the thermodynamic cycle, together with the perturbation pathways, used by an FEP+ calculation. The perturbation pathways are represented by arrows A and B. The difference in the binding free energy ($\Delta\Delta G$) between an ASEM analogue (ΔG_2) and ASEM (ΔG_1) is related to the free energy of transforming ASEM to its analogue in the solvent (ΔG_A) and in α 7-AChBP (ΔG_B).