An efficient and practical aerobic oxidation of benzylic

methylenes by recyclable N-hydroxyimide

Jian Wang,^{a*#} Cheng Zhang,^{b#} Xiao-Qing Ye^a, Wenting Du,^{a*} Shenxin Zeng,^a Jian-Hong Xu^a and Hong Yin^{a*}

^aSchool of Pharmacy, Hangzhou Medical College No. 481 Binwen Road, Binjiang District, Hangzhou 310053, China

^bCollege of Pharmaceutical Science, Zhejiang University of technology, No. 18 Chaowang Road, Hangzhou 310000, China

[#]These authors contributed equally to this work

Supplementary Information

Table of Contents

Table S1. Screen of iron salts	<mark>S3</mark>
Table S2. Screen of solvents	<mark>S3</mark>
Figure S1. Structure of screened NHIs	<mark>S4</mark>
Table S3. Screen of NHIs	<mark>S4</mark>
Figure S2. Linear fitted curve equation of NHPI/internal standa	ard
	<mark>S5</mark>
Figure S3. Linear fitted curve equation of NHSI/internal standa	ırd <mark>S5</mark>
Table S4. Further optimization of Fe(NO ₃) ₃ /NHSI/O ₂ system	<mark>S6</mark>
Table S5. Controlled experiments of EB oxidation	<mark>S6</mark>
Product characterization	<mark>S7</mark>
NMR Spectrum of products	<mark>S9</mark>
References	<mark>S29</mark>

Table S1. Screen of iron salts^a

Entry	Catalyst	Conversion (%) ^b
1	Iron tristearate	78
2	Fe(acac) ₃	73
3	$Fe(NH_4)_2(SO_4)_2$	trace
4	FeOH(CH ₃ COO) ₂	80
5	FeCl ₃	trace
6	Fe(NO ₃) ₃ ·9H ₂ O	83
7	$Fe_2(SO4)_3^c$	69

^aReaction conditions: 2 mmol ethylbenzene and 10 mol % metal salts, 10 mol % NHPI in 2 mL AcOH are stirred at 100°C oil bath for 10 h.

^bConversion is determined by GC.

^c5 mol% Fe₂(SO₄)₃ was added.

Table S2. Screen of solvents^a

	Fe(I	NO ₃) ₃ ●9H ₂ O, NHPI O ₂ , 80 ^o C	
Entry	Solvent		Conversion (%)b
1	АсОН		23
2	Chlorobenzene		trace
3	Cyclohexanone		9
4	EtOAc ^c		11
5	EtOH ^c		<5
6	CH ₃ CN		41
7	PhCN		57
8	DMF		trace
9	DMSO		<5
10	Toluene		19
11	n-Butanol		<5
12	t-Butanol		<5

^a2 mmol ethylbenzene, 5 mol % metal salts, 5 mol % NHPI in 2 mL solvents are stirred at 80 °C oil bath for 10 h.

^bConversion is determined by GC.

^cRecation mixture was stirred at refluxing condition.

Figure S1. Structure of screened NHIs

Table S3. Screen of NHIs^a

	Fe(NC	$D_{3}_{3} \bullet 9H_{2}O, \text{ NHIs}$		_
Prici, 0 ₂ , 80 °C				
Entry	NHIs	Conversion (%) ^b		
1	NHPI	99		
2	NHNI	44		
3	NHND	11		
4	NHSI	97		
5	HOAT	<5		
6	THICA	38		

^a Reaction conditions: 2 mmol ethylbenzene and 5 mol % metal salts, 5 mol % NHIs in 2 mL PhCN are stirred in 90 °C oil bath for 10 h.

^b Conversion is determined by GC with diphenyl ether as internal standard.

Figure S2. Linear regression line and regression equation of NHPI/internal standard when molar raion of NHPI : PhOPh = 0.02 - 0.50)

Figure S3. Linear regression line and regression equation of NHSI/internal standard when molar ratio of NHSI : PhOPh = 0.00 - 0.80)

Table S4. Further optimization of Fe(NO₃)₃/NHSI/O₂ system^a

Entry	$Fe(NO_3)_3 \cdot 9H_2O$	NHSI	PhCN	Т	Oxygen	Time	Yield ^c
	(mol%)	(mol%)	(mL)	(°C)	Source ^b	(h)	(%)
1	5	5	2	90	A	10	93
2	3	3	2	90	А	18	93
3	1	1	2	90	А	24	57
4	1	1	2	100	А	48	68
5	1	2	2	100	А	48	77
6	2	2	2	100	А	24	83
7	1	3	2	100	А	12	86
8	1	3	2	90	А	18	86
9	1	3	2	80	А	48	63
10	1	3	1	90	А	16	86
11	1	3	0.5	90	А	48	61
12	1	3	1	90	В	14	90
13	1	3	1	90	C	16	90
14 ^d	1	3	1	90	В	16	89

^aReaction conditions: 2 mmol ethylbenzene, $Fe(NO_3)_3 \cdot 9H_2O$ and NHSI in PhCN are stirred in 90 °C oil bath.

^bOxygen source condition: A: Air (open system); B: O_2 Balloon without purging; C: O_2 balloon with purging (replacing original air in system with pure O_2).

^cDetermined by GC with diphenyl ether as internal standard.

^d20 mmol% KPF₆ was added as additive.

Table S5. Controlled experiments of EB oxidation^a

Entry	Catalyst	Additive	Conversion ^b
1	5 mol% Fe(NO ₃) ₃	\	98
	5 mol% NHSI		
2°	5 mol% Fe(NO ₃) ₃	\	98
	5 mol% NHSI		
3	2 mol% Fe(NO ₃) ₃	\	79

	5 mol% NHSI		
4	5 mol% NHSI	\	54
5	5 mol% Fe(NO ₃) ₃	\	trace
6	5 mol% Fe(NO ₃) ₃	\	21
	1 mol% NHSI		
7	2.5 mol% Fe ₂ (SO ₄) ₃	\	71
	5 mol% NHSI		
8	15 mol% NaNO ₃	\	57
	5 mol% NHSI		
9	5 mol% Fe(NO ₃) ₃	5 mol% BHT	79
	5 mol% NHSI		
10	5 mol% Fe(NO ₃) ₃	20 mol% BHT	53
	5 mol% NHSI		
11	5 mol% Fe(NO ₃) ₃	100 mol% BHT	trace
	5 mol% NHSI		

^aReaction conditions: 2 mmol ethylbenzene, catalyst, additive in 1 mL PhCN with O_2 balloon are stirred in 90 °C oil bath for 24 h.

^bConversion was determined by GC.

^cReaction flask was tightly wrapped by aluminum foil to avoid any visible light.

Product characterization

Benzophenone^[1] (2a). Compound 2a was obtain as white solid (357 mg, 98% yield). m. p. 48-49 °C (lit.^[1] 47-49 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 – 7.82 (m, 4H), 7.60 (tt, 2H, *J* = 7.5, 1.5 Hz), 7.52 – 7.48 (m, 4H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.8, 137.6, 132.4, 130.1, 128.3.

4-Chlorobenzophenone^[2] **(2b).** Compound **2b** was obtain as white solid (359 mg, 83% yield). m. p. 75-76 °C (lit.^[2] 75-77 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80-7.76 (m, 4H), 7.62 (tt, J =7.5 Hz, 1.5 Hz, 1H), 7.53-7.47 (m, 4H).¹³C NMR (125 MHz, Chloroform-*d*) δ 195.5, 138.9, 137.3, 135.9, 132.7, 131.5, 129.9, 128.7, 128.4.

9-Fluorenone^[1] (2c). Compound 2c was obtain as yellow solid (349 mg, 97% yield). m. p. 83-84 °C (lit.^[5] 84-86 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (dt, *J* = 7.5 Hz, 1 Hz, 2H), 7.51 (dt, *J* = 7.5 Hz, 1 Hz, 2H), 7.48 (dt, *J* = 7.5, 1.5 Hz, 2H), 7.29 (td, *J* = 7.5 Hz, 1.5 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 193.9, 144.4, 134.7, 134.1, 129.0, 124.3, 120.3.

9-Xanthenone^{[3][4]} (2d). Compound 2d was obtain as white solid (384 mg, 98% yield). m. p. 170-172 °C (lit.^[3] 168-170 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.33 (dd, *J* = 8.0 Hz, 1.5 Hz, 2H), 7.72 – 7.69 (m, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.38 – 7.35 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.1, 156.1, 134.7, 126.7, 123.9, 121.8, 117.9.

1-[4-(4-Pyridinyl)phenyl]ethenone^[5] (**2e).** Compound **2e** was obtain as off-white solid (362 mg, 99% yield). m. p. 71-72 °C (lit.^[5] 71-72 °C) ¹H NMR (600 MHz, Chloroform-*d*) δ 8.82 (d, *J* = 6 Hz, 2H), 7.83 (d, *J* = 7.2 Hz, 2H), 7.66 (t, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 6 Hz, 2H), 7.53 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 195.1, 150.3, 144.4, 135.9, 133.6, 130.1, 128.7, 122.9.

1-Tetralone^[1] (2f). Compound 2f was obtain as light yellow liquid (289 mg, 99% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (dd, J = 8.0 Hz, 1.5Hz, 1H), 7.40 (td, J = 7.5 Hz, 1.5Hz, 1H), 7.24(t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 2.90 (t, J = 6.5 Hz, 1H), 2.59 (t, J = 6.5 Hz, 1H), 2.10-2.03 (m,1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 197.9, 144.2, 133.1, 132.4, 128.6, 126.8, 126.3, 38.9, 29.4, 23.1.

1-Indanone^[1] (**2g**). Compound **2g** was obtain as light yellow solid (230 mg, 87% yield). m. p. 39-41 °C (lit.^[1] 40-42 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.5Hz, 1H), 7.59 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.49 (dt, *J* = 8 Hz, 1.0 Hz, 1H), 7.39-7.36 (m, 1H), 3.15 (t, *J* = 6 Hz, 2H), 2.70 (t, *J* = 6 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 207.1, 155.1, 137.0, 134.6, 127.2, 126.7, 123.7, 36.2, 25.8.

3,4-dihydro-1H-2-benzopyran-1-one^[6] (**2h**). Compound **2h** was obtain as light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.5 Hz, 1H), 7.51 (tt, *J* = 7.5 Hz, 1.2 Hz, 1H), 7.35 (t, *J* = 7.5Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 4.50 (t, *J* = 5.5 Hz, 2H), 3.03 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 165.0, 139.5, 133.5, 130.1, 127.5, 127.2, 125.1, 67.2, 27.6.

Acetophenone^[1] (2i). Compound 2i was obtain as light yellow liquid (204 mg, 85% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93-7.91 (m, 2H), 7.52 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.43 – 7.40 (m, 2H), 2.55 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 198.06, 137.09, 133.09, 128.55, 128.28, 26.54.

n-Butyrophenone^[6] (**2j**). Compound **2j** was obtain as light yellow liquid (269 mg, 91% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95-7.93 (m, 2H), 7.51 (tt, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 2.91 (t, *J* = 7.5 Hz, 2H), 1.75 (sext, *J* = 7.5 Hz, 2H), 0.98 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 200.02, 136.92, 132.61, 129.31, 40.23, 17.53, 13.64.

2'-Bromoacetophenone^[7] (**2k**). Compound **2k** was obtain as light yellow liquid (394 mg, 99% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (dd, J = 8 Hz, 1 Hz, 1H), 7.43 (dd, J = 7.5 Hz, 2 Hz, 1H), 7.33 (td, J = 7.5 Hz, 1 Hz, 1H), 7.26 (td, J = 8 Hz, 1.5Hz, 1H), 2.59 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 201.1, 141.3, 133.7, 131.7,128.8, 127.3, 118.7, 30.1.

4'-Bromoacetophenone^[1] **(2I).** Compound **2I** was obtain as light yellow solid (386 mg, 97% yield). m. p. 51-52 °C (lit.^[1] 48-50 °C) ¹H NMR (500 MHz, Chloroform*d*) δ 7.83 (d, *J* = 8.5 Hz, 1H), 7.61 (d, *J* = 8.5 Hz, 1H), 2.59 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 197.0, 135.9, 131.9, 129.8, 128.3, 26.5.

2-Bromoacetophenone^[8] **(2m).** Compound **2m** was obtain as off-white solid (394 mg, 99% yield). m. p. 46-47 °C (lit.^[8] 46-48 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01-7.99 (m, 2H), 7.62 (tt, *J* = 7.5 Hz, 1.5Hz, 1H), 7.53-7.49 (m, 2H), 4.47 (s, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 191.3, 134.0, 133.9, 128.9, 30.9.

4'-Cyanoacetophenone^[9] **(2n).** Compound **2n** was obtain as white solid (200 mg, 69% yield). m. p. 57-59 °C (lit.^[21] 59-60 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (d, J = 8 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 2.65 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5, 139.9, 132.5, 128.7, 117.9, 116.4, 26.7.

4'-Nitroacetophenone^[1] **(20).** Compound **20** was obtain as yellow solid (280 mg, 85 % yield). m. p. 78-79 °C (lit.^[1] 80-81 °C) ¹H NMR (500 MHz, Chloroform-*d*) δ

8.30 (dt, J = 9, 2 Hz, 2H), 8.10 (dt, J = 9, 2 Hz, 2H), 2.68 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 196.3, 150.3, 141.4, 129.3, 123.8, 26.9.

4'-Ethylacetophenone^[10] **(2p).** Compound **2p** was obtain as light yellow liquid (97 mg, 33 % yield).¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.71 (q, J = 7.5 Hz, 2H), 2.58 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 197.8, 150.0, 134.9, 128.5, 128.0, 28.9, 26.5, 15.1.

4'-Methylacetophenone^[11] (**2q).** Compound **2q** was obtain as light yellow liquid (99 mg, 37 % yield). ¹H NMR (500 MHz, Chloroform-d) δ 7.84 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8 Hz, 2H), 2.55, (s, 3H), 2.39 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 197.6, 143.7, 134.6, 129.1, 128.3, 26.3, 21.5.

4'-Acetoxyacetophenone^{[12][13]} **(2r).** Compound **2r** was obtain as off-white solid (238 mg, 67 % yield). m. p. 51-52 °C (lit.^[12] 52-54 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.89-7.83 (m, 2H), 7.10-7.05 (m, 2H), 2.45 (s, 1H), 2.19 (s, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.4, 168.5, 154.1, 134.4, 129.6, 121.5, 26.6, 20.7.

4'-Methoxyacetophenone^[11] **(2s).** Compound **2s** was obtain as light yellow liquid (105 mg, 35 % yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.75-7.72 (m, 2H), 6.75-6.72 (m, 2H), 3.66-3.65 (m, 3H), 2.35-2.34 (m, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 196.4, 163.3, 130.4, 113.5, 55.2, 26.1.

NMR Spectrum of products

2a:

2b:

2c:

2d:

2e:

2f:

2g:

2h:

2i:

2j:

2k:

2l:

2m:

References

- 1. L.-Q. Cui, K. Liu and C. Zhang, Effective oxidation of benzylic and alkane C–H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions, *Organic & Biomolecular Chemistry*, 2011, **9**, 2258.
- K. O. Jeon, J. H. Jun, J. S. Yu and C. K. Lee, Infrared and nuclear magnetic resonance properties of benzoyl derivatives of five-membered monoheterocycles and determination of aromaticity indices, *J. Heterocycl. Chem.*, 2003, 40, 763.
- 3. M. Spektor, Xanthone, *Khim.-Farm. Prom-st.*, 1933, 195.
- 4. J. Zhao and R. C. Larock, One-Pot Synthesis of Xanthones and Thioxanthones by the Tandem Coupling–Cyclization of Arynes and Salicylates, *Organic Letters*, 2005, **7**, 4273.
- T. Dohi, N. Takenaga, A. Goto, H. Fujioka and Y. Kita, Clean and Efficient Benzylic C-H Oxidation in Water Using a Hypervalent Iodine Reagent: Activation of Polymeric Iodosobenzene with KBr in the Presence of Montmorillonite-K10, *J. Org. Chem.*, 2008, 73, 7365.
- 6. A. Shaabani, P. Mirzaei, S. Naderi and D. G. Lee, Green oxidations. The use of potassium permanganate supported on manganese dioxide, *Tetrahedron*, 2004, **60**, 11415.
- N. Schroeder, J. Wencel-Delord and F. Glorius, High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination and Iodination of Arenes, *J. Am. Chem. Soc.*, 2012, 134, 8298.
- V. Nair, S. B. Panicker, A. Augustine, T. G. George, S. Thomas and M. Vairamani, An efficient bromination of alkenes using cerium(IV) ammonium nitrate (CAN) and potassium bromide, *Tetrahedron*, 2001, 57, 7417.
- J. A. Murphy, A. G. J. Commeureuc, T. N. Snaddon, T. M. McGuire, T. A. Khan, K. Hisler, M. L. Dewis and R. Carling, Direct Conversion of N-Methoxy-N-methylamides (Weinreb Amides) to Ketones via a Nonclassical Wittig Reaction, *Organic Letters*, 2005, 7, 1427.
- S. Liu, P. Jiang, G. Song, R. Liu and H. Zhu, Synthesis and optical properties of a series of thermally stable diphenylanthrazolines, *Dyes and Pigments*, 2009, 81, 218.
- 11. Integrated Spectral Database System of Organic Compounds. (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan))
- 12. P. D. Gardner, Phosphorus Acids in Organic Systems. II. "Polyphosphoric Acid" as a Catalyst in the Fries Rearrangement, *Journal of the American Chemical Society*, 1955, **77**, 4674.
- R. Qiu, G. Zhang, X. Ren, X. Xu, R. Yang, S. Luo and S. Yin, Air-stable titanocene bis(perfluorooctanesulfonate) as a new catalyst for acylation of alcohols, phenols, thiols, and amines under solvent-free condition, *Journal of Organometallic Chemistry*, 2010, 695, 1182.