Electronic Supporting Information

In-Situ Exfoliation and Modification of Graphite Foil in Supercapacitor Devices: A Facile Strategy to Fabricate High-Performance Supercapacitors

Byungkwon Jang, Han Kim, Si-Woo Park, Minseob Lim, Jimin Lee, Gwang Myeong Go, and Yong-Ho Choa*

Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Korea

Chemicals and Materials

Expandable graphite (+50 mesh sized), and manganese acetate tetrahydrate ($Mn(OAc)_2 \cdot 4H_2O$, >99 %), and Potassium nitrate (KNO_3 , >99.0 %) were purchased from Sigma Aldrich. Polyester single coated tape (silicone adhesive, $3M^{TM}$ 8993K), and Cellulose separator (Quantitative filter paper, NO.50, 200 µm thickness) was purchased from 3M and Hyundai Micro, respectively.

Fabrication of graphite foil

Expandable graphite (1.5 g) was thermally expanded in a box furnace with a temperature of 950 °C for 3 minutes. After expansion and colling to room temperature, the resulting expanded graphite was pre-formed in 3cm by 12 cm sized-mold and roll-pressed to fabricate graphite foil with a thickness of 100 μ m.

GF supercapacitor device fabrication

As-made graphite foil cut into the desired form to apply an electrode of supercapacitor without current collector using a blade. A cut graphite foil electrode was attached to the adhesive side of silicone tape, and 1 M KNO₃ soaked cellulose paper was placed on it. After placing another electrode on them again, the supercapacitor device was assembled using silicone tape and rubbed with a rubber roller to make a highly packed device.

EGF//EGF supercapacitor device fabrication

To get out the gases produced in the assembled device, the silicone tape of the GF supercapacitor device was stripped off as a size of 2 mm \times 2 mm during in-situ electrochemical exfoliation. Using a power supply, a voltage was sequentially applied to an electrode at 3.0 V for 30 minutes, 4.0 V for 10 minutes, finally, 5.0 V for 5 minutes in step, and the same voltage sequence was applied to another electrode. After the exfoliation step, the exhaust hole was closed using silicone tape.

EGF//MEGF supercapacitor device fabrication

The fabrication method of the EGF//MEGF supercapacitor device was same to the EGF//EGF supercapacitor fabrication method using 1 M KNO₃ mixed with 10 mM Mn(OAc)₂ electrolyte instead of 1 M KNO₃.

As-made graphite foil cut into the desired form to apply an electrode of supercapacitor without current collector using a blade. A cut graphite foil electrode was attached to the adhesive side of silicone tape, and 1 M KNO₃ mixed with 10mM $Mn(OAc)_2$ soaked cellulose paper was placed on it. After placing another electrode on them again, the supercapacitor device was assembled using silicone tape and rubbed with a rubber roller to make a highly packed device. To get out the gases produced in the assembled device, the silicone tape of the GF supercapacitor device was stripped off as a size of 2 mm x 2 mm during in-situ electrochemical exfoliation. Using a power supply, a voltage was sequentially applied to an electrode at 3.0 V for 30 minutes, 4.0 V for 10 minutes, finally, 5.0 V for 5 minutes in step, and the same voltage sequence was applied to another electrode. After the exfoliation step, the exhaust hole was closed using silicone tape.

Characterization

The surface morphology, and corresponding microstructures of the electrodes were analyzed by field emission scanning electron microscopy (FE-SEM, S-4800, Hitachi). Structural characterization of the electrodes was performed using an X-ray diffractometer (XRD, D/MAX-2500/PC, Rigaku) with Cu K α radiation (1.5406 Å). The surface chemical states were investigated by X-ray photoelectron spectroscopy (XPS, AXIS-Nova, Kratos) with an Al Ka radiation source (1486.8 eV) in an ultrahigh vacuum chamber (7 × 10⁻⁹ torr). Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were conducted employing an electrochemical workstation (ZIVE MP1, WonATech). The areal capacitances were then calculated using the following equations¹:

$$C = \frac{1}{S \times v \times \Delta V} \int_{V_0}^{V_0 + \Delta V} I dV$$
 (from CV curves)

$$C = \frac{I \times \Delta t}{S \times \Delta V}_{\text{(from GCD curves)}}$$

where C is the areal capacitance (F/cm²), I is the discharging current density (A), v is the scan rate (V/s), V is the voltage (V), ΔV is the operating voltage window (V), Δt is the discharging time (s), and S is the active area of the electrodes (cm²). Also, the energy density and power density were calculated by the following relationship²:

$$E = \frac{C \times (\Delta V)^2}{2 \times 3,600 (s/h)}$$
$$P = \frac{3,600 (s/h) \times E}{\Delta t}$$

where $E(Wh/cm^2)$ is the energy density and $P(W/cm^2)$ is the power density, respectively.

Reference

- 1. Jungchul Noh, Chang-Min Yoon, Yun Ki Kim, and Jyongsik Jang, Carbon, 2017, 116, 470-478
- 2. Ling Miao, Hui Duan, Dazhang Zhu, Yaokang Lv, Lihua Gan, Liangchun Li, and Mingxian Liu, *J. Mater. Chem. A*, **2021**, Advance Article