Electronic Supplementary Information

Preparation of Hybrid Paper Electrode Based on Hexagonal Boron Nitride Integrated Graphene Nanocomposite for Free-standing Flexible Supercapacitors

Jerome Rajendran^a, Anatoly N. Reshetilov^b and Ashok K. Sundramoorthy^{a*}

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603

203, Tamil Nadu, India

^bG.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian

Academy of Sciences (IBPM RAS),-Subdivision of "Federal Research Center Pushchino

Biological Research Center of the Russian Academy of Sciences"(FRC PBRC RAS),

142290, Pushchino, Moscow oblast, Russia

*Corresponding author

Email: <u>ashokkus@srmist.edu.in</u>

Supporting Figures/Scheme/Table

Scheme S1. Schematic illustration for the preparation of freestanding BN/GrP flexible paper

using BN/graphene dispersion.

Fig. S1. Preparation of BN/GrP electrode for electrochemical measurements of supercapacitor.

Fig. S2. EDX mapping analysis of BN/GrP: (a) oxygen, (b) boron, (c) carbon and (d) nitrogen.

Fig. S3. EDX spectrum of BN/GrP (inset: atomic percentages of elements present in BN/GrP).

Fig. S4. The log of peak current was plotted against the log of scan rate to determine the "b" value of the BN/GrP from the anodic curve of different scan rates.

Fig. S5. Galvanostatic charge/discharge (GCD) curves of GrP and BN/GrP electrodes at a current density of 1 Ag⁻¹.

Active Material	Method of preparation	Electrolyte solution	Capacitance	Power density	Cycles/Retention	Ref.
					1500 02.00/	1
rGO film	Brush-coating/annealing	6 M KOH	81.7 Fg^{-1} at 10 mV s ⁻¹	1.5 kW.kg ⁻¹ at 3 Ag ⁻¹	1500 - 93.8%	I
Graphene paper	freeze-drying	1 M H ₂ SO ₄	172 Fg ⁻¹ at 1 Ag ⁻¹	-	5000 - 99%	2
MnO ₂ -coated	Electrochemical	0.5 M Na ₂ SO ₄	130 Fg ⁻¹ at 1 mV s ⁻¹	62 W.kg-1	5000 - 82%	3
3D graphene	deposition on pressed Ni					
	foam					
GrP/10-MnO ₂	Vacuum filtration and	0.1 M Na ₂ SO ₄	385.2 Fg ⁻¹ at 1 mV s ⁻¹	3.72 kW.kg ⁻¹ at 4	5000 - 85.4%	4
	electrochemical			Ag-1		
	deposition					
GrP	Vacuum filtration	1 M H ₂ SO ₄	195.8 Fg ⁻¹ at 1 mV s ⁻¹	-	10000 - 93.2%	5
BN/GrP	Vacuum filtration	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	321.95 Fg ⁻¹ at 0.5 Ag ⁻¹	3.5 kW.kg ⁻¹ at 9 Ag ⁻¹	6000 - 96.3%	This
	method					work

Table S1. Comparison of specific capacitances, retention and power density of the reported supercapacitors.

Supporting references

- W. Liu, X. Yan, J. Lang, C. Peng and Q. Xue, J. Mater. Chem., 2012, 22, 17245– 17253.
- 2 F. Liu, S. Song, D. Xue and H. Zhang, *Adv. Mater.*, 2012, **24**, 1089–1094.
- Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao and E. Xie, *ACS Nano*, 2013, 7, 174–182.
- O. Sadak, W. Wang, J. Guan, A. K. Sundramoorthy and S. Gunasekaran, *ACS Appl. Nano Mater.*, 2019, 2, 4386–4394.
- 5 O. Sadak, A. K. Sundramoorthy and S. Gunasekaran, *Carbon*, 2018, **138**, 108–117.