Supporting Information

Synthesis of ZnIn₂S₄@Co₃S₄ particles derived from ZIF-67 for photocatalytic

hydrogen production

Ganyu Wang^{a,b}, Wenqian Chen^{a,b*}, Yu Zhang^{a,b}, Qinshang Xu^{a,b}, Yirui Li^{a,b}, Maw

Lin Foo^c, Liang Tang^{*a,b*}*

^a Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of

Education, Shanghai 200444, PR China

^b School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China

^c Department of Chemistry, National University of Singapore, 117543, Singapore

* Corresponding author. E-mail addresses: <u>wenqianchen@shu.edu.cn</u> (W. Q. Chen), tanglliang@shu.edu.cn (L. Tang)

Fig. S1 XRD patterns of samples ZIF-67 (a), ZC-5, $ZnIn_2S_4$ and Co_3S_4 (b).

Fig. S2 SEM images of prepared ZIF-67 (a), Co_3S_4 (b) and pure $ZnIn_2S_4$ (c).

Fig. S3 N_2 adsorption-desorption isotherms of pure $ZnIn_2S_4$ and ZC-5 composite. Inset: the corresponding BJH pore-size distribution plots calculated from the desorption branch.

Fig. S4 Wide-scan XPS spectra of pure ZnIn₂S₄ and ZC-5.

Fig. S5 UPS spectra of pure $ZnIn_2S_4$ (a), ZC-5 (b) and Co_3S_4 (c).

Fig. S6 Photo-luminescence (PL) spectra of $ZnIn_2S_4$ and Co_3S_4 (a); Photocurrent-time curves of $ZnIn_2S_4$ and Co_3S_4 under the irradiation of simulated sunlight (b); Nyquist impedance plots of EIS for $ZnIn_2S_4$ and Co_3S_4 (c).

Fig. S7 Mott-Schottky plots for $ZnIn_2S_4$ (a), ZC-5 (b) and Co_3S_4 (c) in 0.5 M Na_2SO_4 aqueous solution.

Fig. S8 Photocatalytic hydrogen evolution over the ZC-5 photocatalyst for three cycles (a); The XRD patterns of ZC-5 before and after photocatalytic reaction (b).