Supplementary data

Moving-Bed Biofilm Reactor Combined with a Three-Dimensional Electrochemical Pretreatment (MBBR-3DE) for 2,4-D herbicide treatment: Application for real wastewater and improvement of biodegradability

Abdollah Dargahi^{a,b}, Reza Shokoohi^c, Ghorban Asgari^c, Amin Ansari^d, Davood Nematollahi^d,

Mohammad Reza Samarghandie*

^a Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran

^b Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.

^c Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran

^d Department of Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran

^e Research Center for Health Sciences and Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

*Corresponding author E-mail: samarghandimo1980@gmail.com

Table S1. Data for media biofilm carriers in MBBR process				
Gender Media	HDPE (High density poly ethylene)			
Type media	2H-BCN 017 KL			
Density (g/cm ³)	0.98			
Growable special Surface (m ² /m ³)	437			
Average weight media (g)	0.89			
Mean weight media with biofilm media (g)	2.5			

 Table S1. Data for media biofilm carriers in MBBR process

Table S2. Amount of compounds used for synthetic wastewater

Chemical compounds	Amount
KI	0.18 g/L
MnCl ₂ . 4H ₂ O	0.12 g/L
FeCl ₃ . 6H ₂ O	0.15 g/L
CuSO ₄ . 5H ₂ O	0.03 g/L
H ₃ BO ₃	0.15 g/L
CoCl ₂ . 6H ₂ O	0.15 g/L
ZnSO ₄ . 7H ₂ O	0.12 g/L
Na ₂ MnO ₄ . 2H2O	0.06 g/L
EDTA	0.10 g/L
CaCl ₂ . H ₂ O	0.01 g/L
MgSO ₄ . 7H ₂ O	0.09 g/L
Trace elements (micronutrients)	0.3 ml/L
COD	500.0 mg/L

Raw	Test	Purpose	Materials and reagents	
1	Catalase test	Diagnosis of staphylococcus and micrococcus (positive catalase) from streptococcus (negative catalase), differentiation of clostridium (often negative catalase) from bacilli (positive catalase) and differentiation of Listeria monocytogenes (positive catalase) from beta hemolytic streptococcus	Hydrogen peroxide, 3% (H ₂ O ₂)	
2	Simmons Citrate Agar	Identification and differentiation of members of the family Enterobacteriaceae	Culture medium of Simmons Citrate Agar	
3	MR-VP Differentiation of organisms based on the ability to produce end products due to glucose fermentation		MR-VP culture medium (methyl red reagent, alpha naphthol solution and 40% potash)	
4	TSI	Identification of gram-negative bacilli, especially members of the Enterobacteriaceae family	Sloping TSI culture medium tube	
5	KIA Identification of gram-negative bacilli, especially members of the Enterobacteriaceae family		Sloping KIA culture medium tube	
6	Oxidase Isolation of Enterobacteriaceae (which are all negative oxidase) from bacteria such as Vibionaceae, Aeromonas, Pseudomonas (all of which are positive oxidase)		1% solution of tetramethyl-p- phenylenediamine dihydrochloride (TMPD) in sterile distilled water or commercial oxidase ready disk	
7	urease	Determining the ability of bacteria to produce urease	Culture medium of urease	
8	Gelatinase Differentiate gelatinase-producing bacteria (such as Proteus vulgaris) from other bacteria		Culture medium of nutritious gelatin in the tube	
9	Of	Diagnosis of aerobic or anaerobic bacteria	-	

Table S3. Routine microbiological biochemical tests performed in the present study

······································					
Hydraulic retention time (HRT)	S _i S _e	c	First-order model	Second-order (Grau) model	
		S_e	$S_i - S_e$	$S_e \times HRT$	
			HRT	$\overline{S_e - S}$	
0.20	210.0	69.3	0.67	0.31	
0.41	210.0	57.54	0.37	0.57	
0.62	210.0	45.67	0.26	0.79	
0.87	210.0	32.08	0.20	1.03	
1.0	210.0	19.13	0.19	1.1	

Table S4. Data obtained to calculate the kinetic coefficients in the MBBR process

Fig S1. Efficiency of MBBR biological reactor in COD removal during the early stages of reactor adaptation

Fig S2. LC/MS chromatograms after a) 3D electrochemical degradation and b) after biodegradation of 2,4-D herbicide under optimal conditions