## Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion

- 3
- 4 Nur Suaidah Mohd Isa<sup>1,2</sup>, Hani El Kadri<sup>2</sup>, Daniele Vigolo<sup>2,3\*</sup>, Konstantinos Gkatzionis<sup>2,4\*</sup>
- 5 <sup>1</sup> Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu,
- 6 Terengganu, Malaysia
- 7 <sup>2</sup> School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- 8 <sup>3</sup> School of Biomedical Engineering, University of Sydney, NSW 2006, Australia
- 9<sup>4</sup> Department of Food Science and Nutrition, School of the Environment, University of the Aegean,
- 10 Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece
- 11 \*Corresponding authors: kgkatzionis@aegean.gr; daniele.vigolo@sydney.edu.au
- 12
- 13

## 14 Supplementary information

15



20

16

- 27
- 28
- 29
- 30

Figure S1. (A) Schematic representation of the microfluidic encapsulation whereby the different phases of  $W_1$ , oil phase and  $W_2$  were flushed through the inlet by using a pressure controller. The produced  $W_1/O/W_2$  droplet were collected continuously at the outlet. (B) Image and schematic representation of the  $W_1/O/W_2$  droplet containing *E. coli*-GFP. Droplet formation was monitored by using a microscope with FASTCAM. The diameter of the oil globule is given by a: 100 µm while the diameter of the inner  $W_1$  phase is given by b: 50 µm. Scale bar represents 100 µm.

- 31 Table S1. The encapsulation efficiency of *E. coli*-GFP in  $W_1/O/W_2$  emulsions. Data represent mean  $\pm$  32 standard deviation taken from 3 independent experiments.

| Formulation                                                | Encapsulation efficiency (%) |
|------------------------------------------------------------|------------------------------|
| <i>E. coli</i> /DI water in $W_1$ (1% Tween 80)            | 99.99 ± 0.01                 |
| <i>E. coli</i> /DI water in $W_1$ (5% Tween 80)            | 100                          |
| <i>E. coli</i> / LB broth in $W_1$ (1% Tween 80)           | 99.98 ± 0.02                 |
| <i>E. coli</i> /LB broth in $W_1$ (5% Tween 80)            | 99.98 ± 0.02                 |
| <i>E. coli</i> / 0.5% NaCl in $W_1$ (1% Tween 80)          | $99.95 \pm 0.02$             |
| <i>E. coli</i> / 0.5% NaCl in W <sub>1</sub> (5% Tween 80) | $99.97 \pm 0.03$             |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |
|                                                            |                              |

46 Table S2. The effect of different LB broth formulations on the viability of *E. coli*-GFP (Log CFU/mL).
47 Data represent mean standard deviation from 3 independent experiments.

| Incubation time (hour) |                      | Sodium chloride<br>(0.5% w/v) | Tryptone        | Yeast extract   |  |  |
|------------------------|----------------------|-------------------------------|-----------------|-----------------|--|--|
|                        | 0                    | $6.27 \pm 0.05$               | $6.40 \pm 0.04$ | $7.03 \pm 0.09$ |  |  |
|                        | 24                   | $6.18 \pm 0.03$               | $7.98\pm0.03$   | $8.26 \pm 0.03$ |  |  |
| 10                     | Change in Log CFU/mL | -1.48                         | 24.72           | 17.48           |  |  |
| 48                     |                      |                               |                 |                 |  |  |
| 49                     |                      |                               |                 |                 |  |  |
| 50                     |                      |                               |                 |                 |  |  |
| 51                     |                      |                               |                 |                 |  |  |
| 52                     |                      |                               |                 |                 |  |  |
| 53                     |                      |                               |                 |                 |  |  |
| 54                     |                      |                               |                 |                 |  |  |
| 55                     |                      |                               |                 |                 |  |  |
| 56                     |                      |                               |                 |                 |  |  |
| 57                     |                      |                               |                 |                 |  |  |
| 58                     |                      |                               |                 |                 |  |  |
| 59                     |                      |                               |                 |                 |  |  |
| 60                     |                      |                               |                 |                 |  |  |
| 61                     |                      |                               |                 |                 |  |  |
| 62                     |                      |                               |                 |                 |  |  |
| 63                     |                      |                               |                 |                 |  |  |
| 64                     |                      |                               |                 |                 |  |  |
| 65                     |                      |                               |                 |                 |  |  |
| 66                     |                      |                               |                 |                 |  |  |
| 67                     |                      |                               |                 |                 |  |  |
| 68                     |                      |                               |                 |                 |  |  |

- 69 Table S3. Average density measurements for the aqueous and oil phase of W/O/W emulsions at ambient
- 70 temperature (25°C). The density for each sample was determined by measuring the mass per volume

71 for each sample. Data represent mean  $\pm$  standard deviation taken from 3 independent experiments.

|    | Solutions                          | Average density (g/mL)                                      |  |  |  |
|----|------------------------------------|-------------------------------------------------------------|--|--|--|
|    | DIW                                | $0.997 \pm 0.001$                                           |  |  |  |
|    | DIW with E. coli-GFP               | $0.973 \pm 0.001$                                           |  |  |  |
|    | DIW with 1% w/v Tween 80           | $0.986 \pm 0.002$<br>$0.994 \pm 0.001$<br>$0.863 \pm 0.001$ |  |  |  |
|    | DIW with 5% w/v Tween 80           |                                                             |  |  |  |
|    | Mineral Oil                        |                                                             |  |  |  |
|    | Mineral Oil with 1.5% w/v PGPR     | $0.849 \pm 0.003$                                           |  |  |  |
|    | 0.5% w/v NaCl                      | $1.004 \pm 0.002$                                           |  |  |  |
|    | 1.5% w/v NaCl                      | $1.012 \pm 0.003$                                           |  |  |  |
|    | 2.0% w/v NaCl                      | $1.011 \pm 0.002$                                           |  |  |  |
|    | 0.5% w/v NaCl with E. coli-GFP     | $1.004 \pm 0.002$                                           |  |  |  |
|    | 0.5% w/v NaCl w 1% w/v Tween 80    | $1.011 \pm 0.003$                                           |  |  |  |
| 70 | 0.5% w/v NaCl with 5% w/v Tween 80 | $1.023 \pm 0.004$                                           |  |  |  |
| 72 |                                    |                                                             |  |  |  |
| 73 |                                    |                                                             |  |  |  |
| 74 |                                    |                                                             |  |  |  |
|    |                                    |                                                             |  |  |  |
| 75 |                                    |                                                             |  |  |  |
| 76 |                                    |                                                             |  |  |  |
| 77 |                                    |                                                             |  |  |  |
| 78 |                                    |                                                             |  |  |  |
| 79 |                                    |                                                             |  |  |  |
| 80 |                                    |                                                             |  |  |  |
| 81 |                                    |                                                             |  |  |  |
| 82 |                                    |                                                             |  |  |  |
| 83 |                                    |                                                             |  |  |  |
| 84 |                                    |                                                             |  |  |  |
| 85 |                                    |                                                             |  |  |  |
| 86 |                                    |                                                             |  |  |  |
| 00 |                                    |                                                             |  |  |  |
| 8/ |                                    |                                                             |  |  |  |
| 88 |                                    |                                                             |  |  |  |

Table S4. Change in mean W1 droplet and oil globule diameter ( $\mu$ m) at 30, 60 and 180 minutes with respect to 0 minutes of incubation. Samples were prepared in the presence or absence of E. coli-GFP in the W1 phase, with or without 1.5% w/v of NaCl in either W1 or W2 phase. Surfactant concentration was set at either 1% w/v or 5% w/v for Tween 80 in W2 phase. Data represent mean ± standard deviation from 3 independent experiments with N=900 droplet. The mean diameters were compared between samples within each incubation time (small letters) and between different incubation times within each sample (capital letters).

|                        | W <sub>1</sub> /O/W <sub>2</sub> samples | 30 minutes<br>(μm)   |                            | 60 minutes<br>(μm)         |                      | 180 minutes<br>(μm)     |                      |
|------------------------|------------------------------------------|----------------------|----------------------------|----------------------------|----------------------|-------------------------|----------------------|
|                        |                                          | W <sub>1</sub>       | Oil<br>Globule             | $\mathbf{W}_1$             | Oil<br>globule       | $W_1$                   | Oil<br>Globule       |
| With                   | No NaCl, 1%                              | 0.015 <sup>aA</sup>  | -22.25 <sup>aA</sup> $\pm$ | $0.036{}^{aA}~\pm$         | -22.23ªA             | 0.051ªA                 | -19.99ªA             |
| <i>E. coli-</i><br>GFP | Tween 80                                 | $\pm 0.001$          | 1.10                       | 0.002                      | ± 1.301              | $\pm 0.002$             | ± 1.241              |
| 011                    | No NaCl, 5%                              | 0.017 <sup>aA</sup>  | -22.26 <sup>aA</sup>       | $0.027  ^{aA} \pm$         | -22.25 <sup>aA</sup> | 0.032 <sup>aA</sup>     | -22.23ªA             |
|                        | Tween 80                                 | $\pm 0.001$          | $\pm 0.802$                | 0.001                      | $\pm 0.913$          | $\pm 0.002$             | $\pm 0.921$          |
|                        | 1.5% NaCl in W <sub>1</sub> ,            | 0.947 <sup>bA</sup>  | -22.24 <sup>aA</sup>       | $9.085^{bB} \pm$           | -22.23 <sup>aA</sup> | 15.304 <sup>bC</sup>    | -18.04 <sup>bB</sup> |
|                        | 1% Tween 80                              | $\pm 0.10$           | $\pm 1.406$                | 0.62                       | $\pm 0.923$          | $\pm 1.08$              | $\pm 1.01$           |
|                        | 1.5% NaCl in W <sub>1</sub> ,            | 0.317 <sup>cA</sup>  | -22.256 <sup>aA</sup>      | 5.316 <sup>cB</sup> ±      | -22.232ªA            | $9.865^{\text{cC}} \pm$ | -22.22ªA             |
|                        | 5% Tween 80                              | $\pm 0.03$           | ± 1.302                    | 0.51                       | $\pm 1.311$          | 1.16                    | ± 1.409              |
|                        | 1.5% NaCl in W <sub>2</sub> ,            | -0.813 <sup>dA</sup> | -22.23ªA                   | -15.388 <sup>dB</sup>      | -22.16 <sup>aA</sup> | -20.758 <sup>dC</sup>   | -16.12 <sup>cB</sup> |
|                        | 1% Tween 80                              | $\pm 0.06$           | ± 1.105                    | $\pm 1.02$                 | $\pm 0.805$          | $\pm 1.04$              | $\pm 0.903$          |
|                        | 1.5% NaCl in W <sub>2</sub> ,            | -0.381 <sup>eA</sup> | -22.23 <sup>aA</sup>       | -6.732 <sup>eB</sup> $\pm$ | -22.23ªA             | -10.534 <sup>eC</sup>   | -22.2ªA              |
|                        | 5% Tween 80                              | $\pm 0.02$           | $\pm 1.007$                | 0.82                       | ± 1.106              | ± 1.47                  | ± 1.202              |
| Without                | No NaCl, 1%                              | $0.03^{aA} \pm$      | -22.23ªA                   | $0.038^{aA}$ $\pm$         | -22.23ªA             | 0.065 <sup>aA</sup>     | -17.76 <sup>aB</sup> |
| <i>E. coli-</i><br>GFP | Tween 80                                 | 0.002                | $\pm 0.801$                | 0.001                      | $\pm 0.821$          | $\pm 0.002$             | $\pm 0.701$          |
| 011                    | No NaCl, 5%                              | 0.025 <sup>aA</sup>  | -22.24 <sup>aA</sup>       | $0.04^{aA}$ ±              | -22.23ªA             | 0.048 <sup>aA</sup>     | -22.22 <sup>bA</sup> |
|                        | Tween 80                                 | $\pm 0.003$          | $\pm 0.935$                | 0.004                      | $\pm 0.905$          | $\pm 0.01$              | $\pm 1.408$          |
|                        | 1.5% NaCl in W <sub>1</sub> ,            | 1.021 <sup>bA</sup>  | -22.22ªA                   | $10.242^{bB} \pm$          | -22.23ªA             | 16.527 <sup>bC</sup>    | -16.98cB             |
|                        | 1% Tween 80                              | $\pm 0.02$           | $\pm 1.401$                | 1.62                       | ± 1.207              | ± 1.62                  | $\pm 1.301$          |
|                        | 1.5% NaCl in W <sub>1</sub> ,            | 0.439 <sup>cA</sup>  | -22.23ªA                   | 5.837 <sup>cB</sup> ±      | -22.23ªA             | 10.104°C                | -22.22 <sup>bA</sup> |
|                        | 5% Tween 80                              | $\pm 0.06$           | $\pm 1.611$                | 1.13                       | $\pm 1.503$          | ± 1.16                  | $\pm 1.371$          |
|                        | 1.5% NaCl in W <sub>2</sub> ,            | -0.92 <sup>dA</sup>  | -22.23ªA                   | -13.323 <sup>dB</sup>      | -22.13 <sup>aA</sup> | -18.906 <sup>dC</sup>   | -15.28 <sup>dB</sup> |
|                        | 1% Tween 80                              | $\pm 0.12$           | $\pm 0.781$                | $\pm 0.91$                 | $\pm 0.838$          | $\pm 1.02$              | $\pm 0.911$          |
|                        | 1.5% NaCl in W <sub>2</sub> ,            | -0.368eA             | -22.22 <sup>aA</sup>       | $\textbf{-9.048}^{eB}\pm$  | -22.22 <sup>aA</sup> | -13.015 <sup>eC</sup>   | -22.2 <sup>bA</sup>  |
|                        | 5% Tween 80                              | $\pm 0.05$           | $\pm 1.108$                | 0.56                       | ± 1.265              | $\pm 1.14$              | ± 1.153              |

96 Data were analysed with one-way ANOVA.

97 <sup>abcde</sup>means ± standard deviation and <sup>ABC</sup> means ± standard deviation with different letters are significantly

98 different at P < 0.05.

99

100

101