Electronic Supplementary Information

Dye-catalyst dyads for photoelectrochemical water

oxidation based on metal-free sensitizers

Cristina Decavoli,^a Chiara L. Boldrini,^a Vanira Trifiletti,^b Sally Luong,^b Oliver Fenwick,^b Norberto

Manfredi,*a and Alessandro Abbotto*a

^a Department of Materials Science and INSTM Unit, Solar Energy Research Center MIB-SOLAR, University of Milano – Bicocca, Via R. Cozzi 55, I-20125, Milano, Italy

^b School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, UK

Email: alessandro.abbotto@unimib.it; norberto.manfredi@unimib.it

Table of Content

Figure S1. Absorption spectra of 1-µm TiO ₂ film sensitized by the investigated dyes (solid line) and corresponding dyads (dash-dot line)4
Figure S2. CV of dyes in solution in TBAClO ₄ 0.1 M in DMF degassed with Ar4
Figure S3. DPV of dyes in solution in TBACIO ₄ 0.1 M in DMF degassed with Ar5
Figure S4. CV of dye CBZ-4Py, corresponding dyad CBZ-4Py+Ru, and of the Ru-precursor (Ru) on a 3-µm-thick TiO ₂ film (0.196 cm ²) in TBAClO ₄ 0.1 M in CH ₃ CN degassed with Ar.
Figure S5. CV of dye CBZ-3Py, corresponding dyad CBZ-3Py+Ru, and of the Ru-precursor (Ru) on a 3-µm-thick TiO ₂ film (0.196 cm ²) in TBAClO ₄ 0.1 M in CH ₃ CN degassed with Ar.
Figure S6. CV of CBZ-4Py, CBZ-4Py+Ru and corresponding N-alkylcarbazole (CBZ-Th) on 3.5-µm-thick TiO ₂ film in TBAClO ₄ 0.1 M in CH ₃ CN degassed with Ar6
Figure S7. XPS survey spectra of the investigated dyes and dyads compared to the TiO_2 spectrum; core-levels involved in the bonding interaction between TiO_2 and the dyes are labelled in red
Figure S8. XPS spectra of the high-resolution core level for N 1s region of the investigated dyes and dyads compared to the bare TiO ₂
Figure S9. XPS valence-level spectrum of the investigated dyes and dyads compared to the bare TiO ₂ ; in the inset, the enlargement of the spectrum in the region where the contribution of ruthenium is clearly visible below 3.5 eV
Figure S10. Linear sweep voltammogram (LSV) of TiO ₂ films sensitized with CBZ-4Py+Ru (red) and CBZ-3Py+Ru (black) in 0.1 M Na ₂ SO ₄ at pH 5.8 under chopped illumination (200 W Xe lamp; 420<λ<800 nm)
Figure S11. Chronoamperometry of TiO ₂ films sensitized with CBZ-3Py (red) and CBZ-3Py+Ru (black) in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm)
Figure S12. Chronoamperometry of TiO ₂ films sensitized with CBZ-4Py (red) and CBZ-4Py+Ru (black) in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm)
Figure S13. 2-hours-chronoamperometry of TiO ₂ films sensitized with CBZ-3Py+Ru in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm)
Figure S14. 2-hours-chronoamperometry of TiO ₂ films sensitized with CBZ-4Py+Ru in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm)
Figure S15. Collector-Generator plot of a CBZ-4Py+Ru sensitized electrode. Black line: current–time trace at illuminated (200 W Xe lamp; $420 < \lambda < 800$ nm) CBZ-4Py+Ru dyad on TiO ₂ in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE. Red line: current– time traces at an FTO collector electrode, 300 µm from the photoanode at an applied bias of ~ -0.6 V vs NHE measured concurrently with the photoelectrochemical–time trace (FE of shown measurement = 65%)

Figure S16. Incident photon-to-current efficiency (IPCE) of TiO ₂ films sensitized with CBZ- 3Py (black) and CBZ-3Py+Ru (red) in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under monochromatic illumination11
Figure S17. Incident photon to current efficiency of TiO ₂ films sensitized with CBZ-4Py (black) and CBZ-4Py+Ru (red) in 0.1 M Na ₂ SO ₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under monochromatic illumination12
Figure S18. Light harvesting efficiency (LHE) of TiO ₂ films sensitized with the investigated dyads12
Figure S19. Absorbed photon-to-current efficiency (APCE) of TiO ₂ films sensitized with the investigated dyads13
¹ H and ¹³ C NMR
Figure S20. ¹ H NMR of 2 in CDCl ₃ 14
Figure S21. ¹ H NMR of 3a in CDCl ₃ 14
Figure S22. ¹ H NMR of 3b in CDCl ₃ 15
Figure S23. ¹ H NMR of 4a in DMSO-d ₆ 15
Figure S24. ¹ H NMR of 4b in DMSO-d ₆ 16
Figure S25. ¹ H NMR of CBZ-4Py in DMSO-d ₆ 16
Figure S26. ¹³ C NMR of CBZ-4Py in DMSO-d ₆ 17
Figure S27. ¹ H NMR of CBZ-3Py in DMSO-d ₆ 17
Figure S28. ¹³ C NMR of CBZ-3Py in DMSO-d ₆ 18
IR spectra19
Figure S29: FT-IR spectrum of CBZ-4Py19
Figure S30: FT-IR spectrum of CBZ-3Py19
HRMS spectra20
Figure S31. HRMS spectrum of CBZ-4Py20
Figure S32. HRMS spectrum of CBZ-3Py20

Figure S1. Absorption spectra of $1-\mu m$ TiO₂ film sensitized by the investigated dyes (solid line) and corresponding dyads (dash-dot line).

Figure S2. CV of dyes in solution in TBACIO₄ 0.1 M in DMF degassed with Ar.

Figure S3. DPV of dyes in solution in TBACIO₄ 0.1 M in DMF degassed with Ar.

Figure S4. CV of dye **CBZ-4Py**, corresponding dyad **CBZ-4Py+Ru**, and of the Ru-precursor (Ru) on a 3- μ m-thick TiO₂ film (0.196 cm²) in TBACIO₄ 0.1 M in CH₃CN degassed with Ar.

Figure S5. CV of dye **CBZ-3Py**, corresponding dyad **CBZ-3Py+Ru**, and of the Ru-precursor (Ru) on a 3- μ m-thick TiO₂ film (0.196 cm²) in TBACIO₄ 0.1 M in CH₃CN degassed with Ar.

Figure S6. CV of **CBZ-4Py**, **CBZ-4Py+Ru** and corresponding N-alkylcarbazole (**CBZ-Th**) on 3.5- μ m-thick TiO₂ film in TBACIO₄ 0.1 M in CH₃CN degassed with Ar.

Figure S7. XPS survey spectra of the investigated dyes and dyads compared to the TiO_2 spectrum; core-levels involved in the bonding interaction between TiO_2 and the dyes are labelled in red.

Figure S8. XPS spectra of the high-resolution core level for N 1s region of the investigated dyes and dyads compared to the bare TiO_2 .

Figure S9. XPS valence-level spectrum of the investigated dyes and dyads compared to the bare TiO_2 ; in the inset, the enlargement of the spectrum in the region where the contribution of ruthenium is clearly visible below 3.5 eV.

Figure S10. Linear sweep voltammogram (LSV) of TiO₂ films sensitized with **CBZ-4Py+Ru** (red) and **CBZ-3Py+Ru** (black) in 0.1 M Na₂SO₄ at pH 5.8 under chopped illumination (200 W Xe lamp; $420<\lambda<800$ nm)

Figure S11. Chronoamperometry of TiO₂ films sensitized with **CBZ-3Py** (red) and **CBZ-3Py+Ru** (black) in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm).

Figure S12. Chronoamperometry of TiO₂ films sensitized with **CBZ-4Py** (red) and **CBZ-4Py+Ru** (black) in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm).

Figure S13. 2-hours-chronoamperometry of TiO_2 films sensitized with **CBZ-3Py+Ru** in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm).

Figure S14. 2-hours-chronoamperometry of TiO₂ films sensitized with **CBZ-4Py+Ru** in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under illumination (200 W Xe lamp; $420 < \lambda < 800$ nm).

Figure S15. Collector-Generator plot of a **CBZ-4Py+Ru** sensitized electrode. Black line: current–time trace at illuminated (200 W Xe lamp; $420 < \lambda < 800$ nm) **CBZ-4Py+Ru** dyad on TiO₂ in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE. Red line: current–time traces at an FTO collector electrode, 300 µm from the photoanode at an applied bias of ~ -0.6 V vs NHE measured concurrently with the photoelectrochemical–time trace (FE of shown measurement = 65%).

Figure S16. Incident photon-to-current efficiency (IPCE) of TiO_2 films sensitized with **CBZ-3Py** (black) and **CBZ-3Py+Ru** (red) in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under monochromatic illumination.

Figure S17. Incident photon to current efficiency of TiO_2 films sensitized with **CBZ-4Py** (black) and **CBZ-4Py+Ru** (red) in 0.1 M Na₂SO₄ at pH 5.8 with an applied bias of ~0.5 V vs NHE under monochromatic illumination.

Figure S18. Light harvesting efficiency (LHE) of TiO_2 films sensitized with the investigated dyads.

Figure S19. Absorbed photon-to-current efficiency (APCE) of TiO_2 films sensitized with the investigated dyads.

Figure S21. ¹H NMR of **3a** in CDCl₃.

Figure S23. ¹H NMR of 4a in DMSO- d_6 .

Figure S25. ¹H NMR of CBZ-4Py in DMSO-d₆.

Figure S26. ¹³C NMR of CBZ-4Py in DMSO-d₆.

Figure S27. ¹H NMR of CBZ-3Py in DMSO-d₆.

Figure S28. ¹³C NMR of CBZ-3Py in DMSO-d₆.

IR spectra

Figure S29: FT-IR spectrum of CBZ-4Py

Figure S30: FT-IR spectrum of CBZ-3Py

HRMS spectra

Figure S31. HRMS spectrum of CBZ-4Py.

Figure S32. HRMS spectrum of CBZ-3Py.