

Electronic Supplementary Information (ESI)

for

**Continuous liquid-phase synthesis of nickel phosphide
nanoparticles in a slug-flow microreactor**

Huidong Zheng,^{*a} Donglin Li,^a Jingjing Chen,^a Jie Liu,^a Zuoyi Yan,^a and
S. Ted Oyama^{*a,b,c}

^a College of Chemical Engineering, Fuzhou University, Xueyuan Road No. 2, Minhou, Fuzhou, Fujian 350108, China

^b Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

^c Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, 24060, USA

* To whom correspondence should be addressed.

E-mail: youngman@fzu.edu.cn; oyama@vt.edu

1. Calculations on continuous preparation of nanoparticles:

(1)

The concentrations of each component are calculated by following Equation:

$$C_i = \frac{n_i}{V_{\text{total}}} = \frac{n_i}{\frac{n_{\text{TOP}}M_{\text{TOP}}}{\rho_{\text{TOP}}} + \frac{n_{\text{1-oct}}M_{\text{1-oct}}}{\rho_{\text{1-oct}}}}, \quad i = \text{Ni, TOP, 1-oct} \quad (\text{S1-1})$$

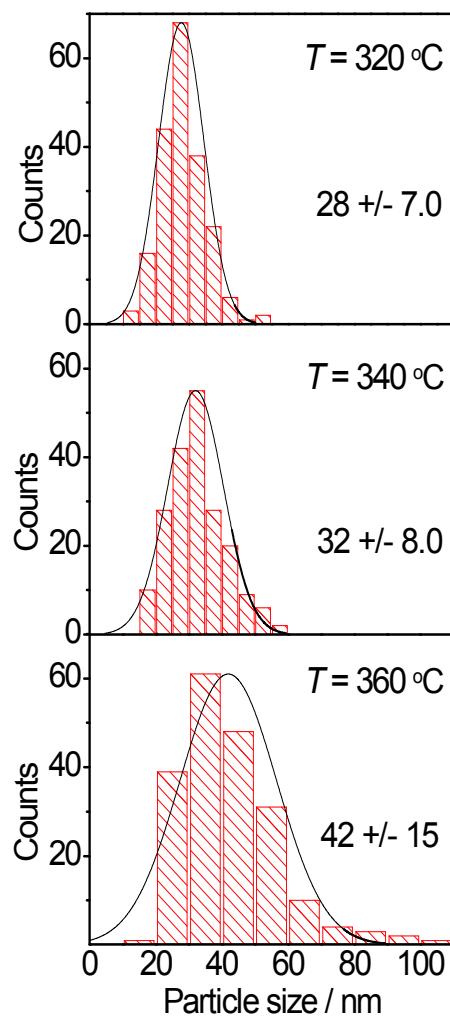
(2)

Taking the thermal expansion of the flow into account, the residence time τ can be calculated as following Equation:

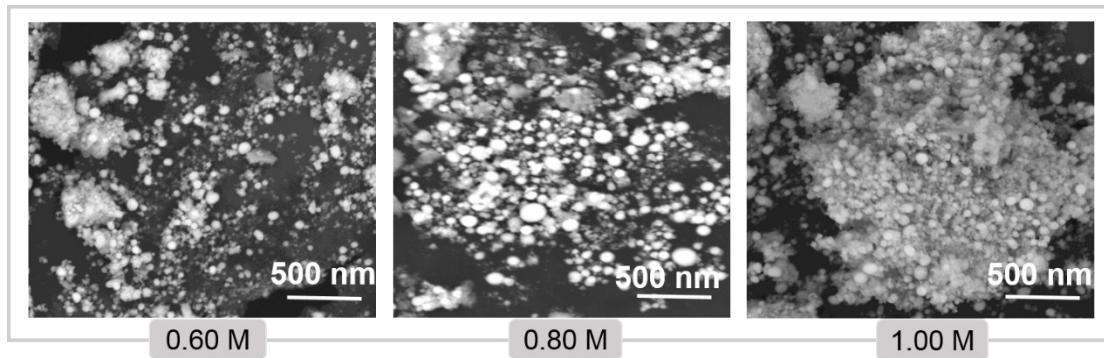
$$\tau = \frac{V_{\text{tube}}}{F} = \frac{\pi d^2 l / 4}{L[1 + \alpha(T - T_0)]} \quad (\text{for single-phase process}) \quad (\text{S2-1})$$

$$\text{or } \tau = \frac{V_{\text{tube}}}{F} = \frac{\pi d^2 l / 4}{G[(T + 273)/(T_0 + 273)] + L[1 + \alpha(T - T_0)]} \quad (\text{for two-phase process}) \quad (\text{S2-2})$$

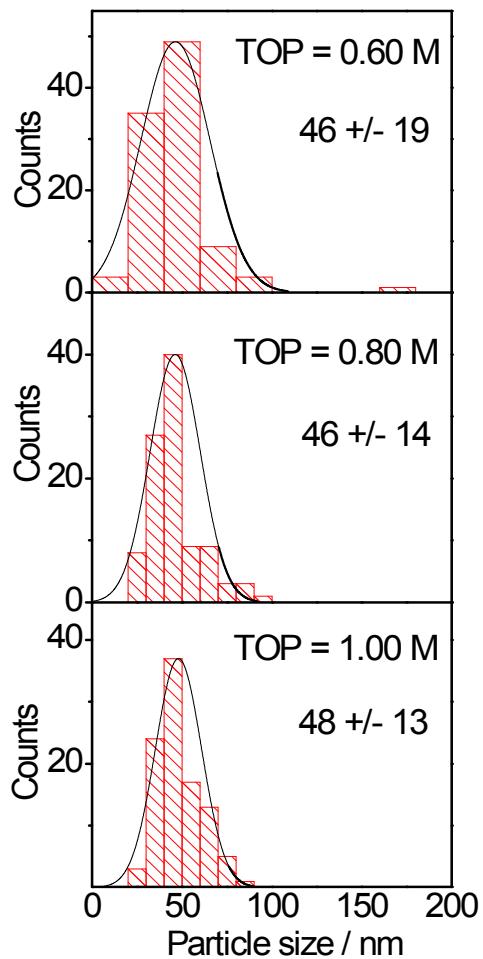
where F is actual flow rate at reaction temperature, l is the tube length, G and L are gas and liquid flow rates at room temperature respectively, T and T_0 are the reaction temperature and room temperature respectively, α is the thermal expansion coefficient of the liquid, typically $\alpha = 0.0007 \text{ K}^{-1}$ for long chain paraffins (taking 1-octadecene to be a paraffin).

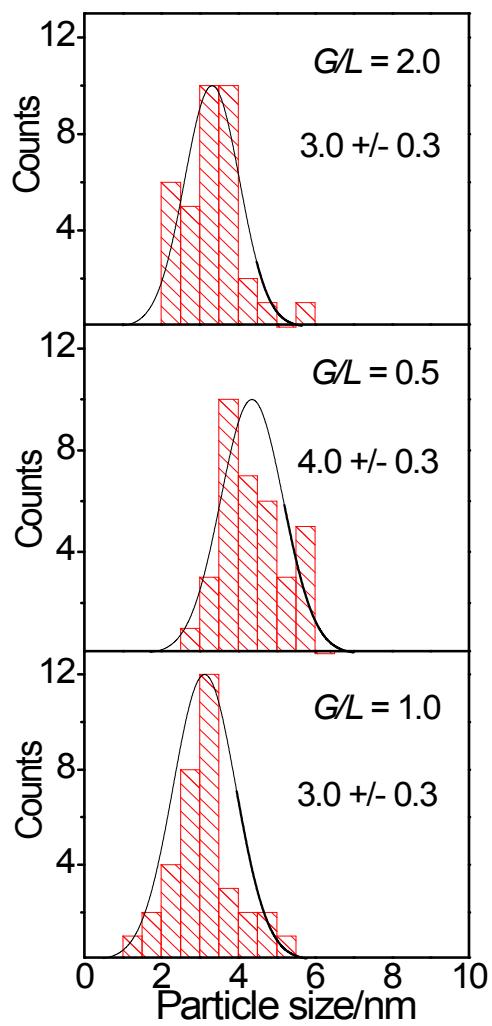

(3)

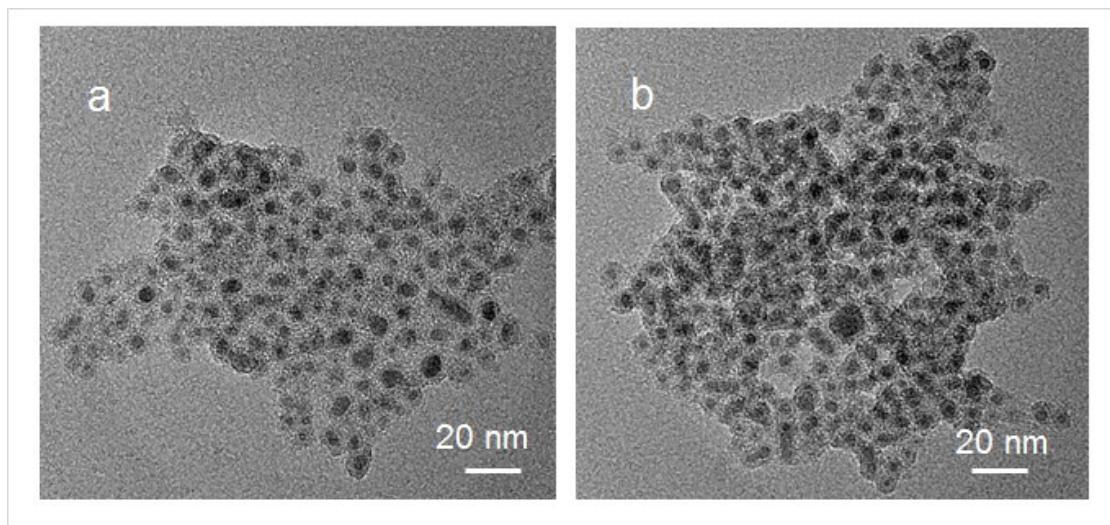
The product yield was calculated by the following Equation:


$$Y = \frac{n_{\text{Ni}_2\text{P}}}{n_{\text{T}}} \times 100\% = \frac{m/M_{\text{Ni}_2\text{P}}}{n_{\text{Ni}}/2} \times 100\% \quad (\text{S2-3})$$

where Y is the yield of Ni_2P , $n_{\text{Ni}_2\text{P}}$ and n_{T} are actual and theoretical mole product of Ni_2P respectively, m is the collected amount of Ni_2P , $M_{\text{Ni}_2\text{P}}$ is the molecular weight of Ni_2P , and n_{Ni} is the mole of $\text{Ni}(\text{acac})_2$ feed.


2. Particle size distribution and SEM images:


Figure S3. Particle size distributions of Ni_2P nanoparticles synthesized at 320, 340, and 360 $^\circ\text{C}$; $\tau = 170$ s; $C_{\text{Ni}} = 0.05$ M; $C_{\text{TOP}} = 0.80$ M; $C_{\text{1-oct}} = 1.70$ M; $n = 100$.


Figure S4. SEM micrographs of Ni₂P nanoparticles synthesized with TOP concentrations of 0.60, 0.80 and 1.00 M; $T = 360$ °C; $L = 1.0$ mL/min; $\tau = 170$ s; P/Ni = 16.0; $C_{\text{Ni}} = 0.05$ M.

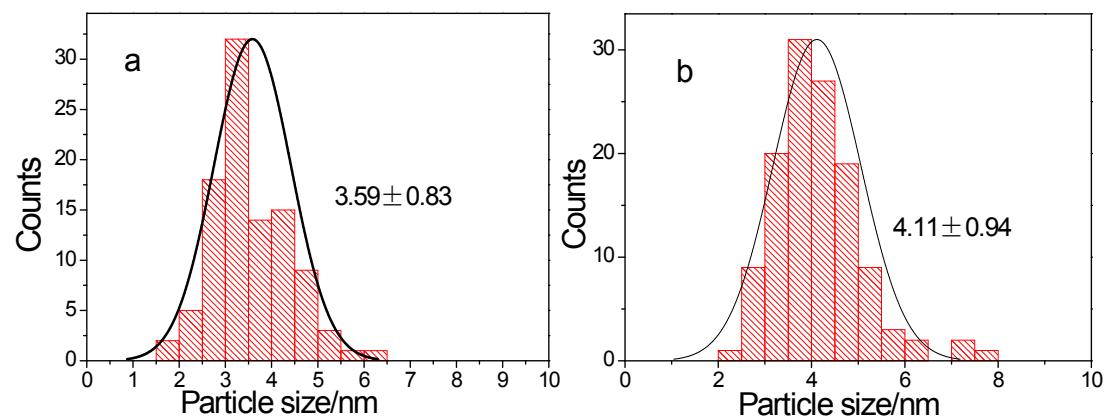

Figure S5. Particle size distributions of Ni_2P nanoparticles synthesized with TOP concentrations of 0.60, 0.80 and 1.00 M; $T = 360\text{ }^\circ\text{C}$; $L = 1.0\text{ mL/min}$; $\tau = 170\text{ s}$; $\text{P/Ni} = 16.0$; $C_{\text{Ni}} = 0.05\text{ M}$; $n = 100$.

Figure S6. Particle size distributions of Ni_2P nanoparticles synthesized in different gas and liquid flow rates; $T = 360 \text{ }^\circ\text{C}$; $C_{\text{Ni}} = 0.05 \text{ M}$; $C_{\text{TOP}} = 0.80 \text{ M}$; $C_{1\text{-oct}} = 1.70 \text{ M}$; $n = 50$.

Figure S7. TEM micrographs of Ni_2P nanoparticles synthesized in $G/L=0.5$; $T=360\text{ }^\circ\text{C}$; $C_{\text{Ni}}=0.05$ M; $C_{\text{TOP}}=0.80$ M; $C_{\text{1-oct}}=1.70$ M.

Figure S8. Particle size distributions of Ni_2P nanoparticles synthesized in $G/L=0.5$; $T = 360$ $^{\circ}\text{C}$; $C_{\text{Ni}}=0.05$ M; $C_{\text{TOP}} = 0.80$ M; $C_{\text{1-oct}} = 1.70$ M; $n = 50$.