Supporting information

Hydrogenolysis of lignin-derived aryl ethers to monomers over a

MOF-derived Ni/N-C catalyst

Xing-Gang Si,^a Yun-Peng Zhao,^{a,b*} Qing-Lu Song,^a Jing-Pei Cao,^{a*} Rui-Yu Wang,^c and Xian-Yong

Wei^a

^aKey Laboratory of Coal Processing and Efficient Utilization (Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

^bState Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi

Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan

030024, China

^cLow Carbon Energy Institute, China University of Mining & Technology, Xuzhou 221008, Jiangsu,

China

^{*}Corresponding author. Tel: +86 516 83885951.

E-mail address: zhaoyp@cumt.edu.cn (Y.P. Zhao), caojingpei@cumt.edu.cn (J.P. Cao)

Surface element content of fresh and spent N/N-C-450 from XPS analyses			
Content (atomic/%) ^a			
С	Ν	0	Ni
62.5	11.7	12.0	13.8
66.8	10.9	13.5	8.8
	C 62.5 66.8	Content (a C N 62.5 11.7 66.8 10.9	C N O 62.5 11.7 12.0 66.8 10.9 13.5

Table S1 Surface element content of fresh and spent Ni/N-C-450 from XPS analyses

^a Determined by XPS.

Table S2

Effect of catalyst calcination temperature (CT) on DPE conversion

			Selectivity/%				
Entry	CT/ºC	Conversion/%				\bigcirc	OH
1	350	80.1	0	22.2	32.6	6.3	38.9
2	450	100.0	13.7	25.9	17.3	12.9	30.2
3	550	73.0	7.5	24.7	30.7	7.7	29.4

Reaction conditions: 100 mg DPE, 20 mg Ni/N-C-X, 20 mL n-hexane, 3MPa H₂, 180 °C, 2 h.

Table S3

Hydrogenolysis of phenol and benzyl alcohol over Ni/N-C-450 catalyst

Substrate	Conversion (%)	Selectivity/%	
ОН	100.0	ОН 100.0	
ОН	100.0	100.0	

Conditions: 100 mg benzene or benzyl alcohol, 30 mg Ni/N-C-450, 20 ml *n*-hexane, 0.5 MPa H₂, 200 °C, 3h.

Table S4

The BDEs of C-O bonds in DPE and its hydrogenation products

Compound	L to			
BDEs (kJ mol ⁻¹)	352.6	362.5	299.5	428.4

Table S5

The relative content of Ni⁰ and Ni²⁺ on fresh and spent Ni/N-C-450 from XPS analyses

Sample	Ni ⁰ (%) ^a	Ni ²⁺ (%) ^a
fresh Ni/N-C-450	40.9	59.1
spent Ni/N-C-450	29.5	70.5

^a Calculated by semi-quantitative method based on integral area of fitted peaks in Ni2p regions.

Fig. S1 TG and DTG curves of Ni-MOF.

Fig. S2 (a) N_2 adsorption-desorption isotherms and (b) the pore size distribution curves of Ni/N-C-350, Ni/N-C-450 and Ni/N-C-550.

Fig. S3 Photographs of (a) Ni-MOF, (b) Ni/N-C-450 catalyst.

Fig. S4 DPE conversion over different recycled Ni/N-C-450 catalyst.

Fig. S5 XRD patterns of fresh and spent Ni/N-C-450 catalyst.

Fig. S6 XPS spectra of spent Ni/N-C-450 catalyst: (a) survey, (b) Ni 2p, (c) N 1s, and (d) C 1s.