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S1 (Additional) Materials and methods

S1.1 Details of data set

A breakdown of the number of examples for each task in the whole dataset is provided below. The tasks are loosely
categorized based on the “type” of reaction but this does not imply that the reactions with the same description share an
underlying mechanism. A representative example is in the borylation category there are reactions using an organolithium
reagent and examples using palladium coupling.

Table S1: Description of all C-H activation tasks used in this study. The number of examples reflects the total number,
divided in an 80:10:10 split for training:validation:testing.

Num. Examples Description SMILES of other reactant
16152 bromation BrBr

5791 nitration [N+](=O)(O)[O-]

4569 formylation CN(C)C=O

2895 chlorination ClCl

1311 Friedel-Crafts acylation CC(=O)Cl

983 carbonylation C=O

833 carboxylation O=C=O

768 Friedel-Crafts acylation CC(=O)OC(C)=O

743 olefination C=CC(=O)OCC

743 arylation Ic1ccccc1

690 borylation CC1(C)OB(B2OC(C)(C)C(C)(C)O2)OC1(C)C

688 Friedel-Crafts acylation O=C(Cl)c1ccccc1

659 olefination C=CC(=O)OCCCC

595 1,2 addition O=Cc1ccccc1

573 1,4 addition C=CC(=O)OC

558 methylation CI

547 silylation C[Si](C)(C)Cl

513 formylation COC(Cl)Cl

487 1,2 addition C=Cc1ccccc1

470 1,4 addition O=[N+]([O-])C=Cc1ccccc1

457 acylation CC(=O)O

454 sulfonyl azide addition Cc1ccc(S(=O)(=O)N=[N+]=[N-])cc1

415 arylation COc1ccc(I)cc1

400 arylation Brc1ccccc1

394 arylation OB(O)c1ccccc1

360 arylation Cc1ccc(I)cc1

345 1,4 addition C=CC(C)=O

333 formylation C1N2CN3CN1CN(C2)C3
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326 trifluoroacetylation O=C(OC(=O)C(F)(F)F)C(F)(F)F

315 methylation CO

285 acetylation O=C1CCC(=O)O1

284 acetylation O=C(Cl)CCl

274 sulfonylation Cc1ccc(S(=O)(=O)Cl)cc1

268 thiolation CSSC

262 arylation N#Cc1ccc(Br)cc1

258 acetylation O=C(O)C(=O)c1ccccc1

256 arylation COc1ccc(Br)cc1

255 arylation Cc1ccc(Br)cc1

240 borylation CC1(C)OBOC1(C)C

236 alkyne coupling CC(C)[Si](C#CBr)(C(C)C)C(C)C

232 arylation Nc1ccc([N+](=O)[O-])cc1

227 stannylation CCCC[Sn](Cl)(CCCC)CCCC

223 acylation O=C(Cl)C(=O)Cl

220 borylation CC(C)OB1OC(C)(C)C(C)(C)O1

216 1,2 addition C#Cc1ccccc1

210 1,2 addition CCOC(=O)C(=O)C(F)(F)F

209 acylation O=C(O)c1ccccc1

207 olefination C=CC(=O)OC(C)(C)C

204 acylation CCOC(=O)C(=O)Cl

201 diazotization Nc1ccccc1

199 1,2 addition O=C(C=Cc1ccccc1)c1ccccc1

196 arylation Brc1cccnc1

191 amination C1COCCN1

191 arylation Clc1ccc(I)cc1

186 1,2 addition C(#Cc1ccccc1)c1ccccc1

182 phosphine synthesis ClP(c1ccccc1)c1ccccc1

178 1,2 addition CCOC(=O)C=O

178 arylation O=Cc1ccc(Br)cc1

172 arylation FC(F)(F)c1ccc(Br)cc1

170 acylation CCC(=O)Cl

167 1,2 addition COc1ccc(C=O)cc1

167 trichloroacylation O=C(Cl)C(Cl)(Cl)Cl

164 alkylation OCc1ccccc1

164 alkylation CCOC(=O)C(F)(F)Br

163 arylation O=[N+]([O-])c1ccc(Br)cc1

159 alkylation C=CCBr

159 1,2 addition CC=O

158 alkylation CN(C)CN(C)C

156 arylation FC(F)(F)c1ccc(I)cc1

155 methylation CS(C)=O

155 amidation O=c1onc(-c2ccccc2)o1

155 arylation CC(=O)c1ccc(Br)cc1

151 acylation O=Cc1ccc(Cl)cc1

150 methylation Sc1ccccc1

149 arylation CCOC(=O)c1ccc(I)cc1

147 phosphonate synthesis CCO[PH](=O)OCC

147 allylation C=CCOC(C)=O

138 alkylation O=S(=O)(CCl)c1ccccc1

138 arylation N#Cc1ccccc1Br

135 acylation O=C1OC(=O)c2ccccc21

134 acylation (oxidative) Cc1ccccc1

133 arylation Cc1ccc(Cl)cc1

132 alkylation (oxidative) C1COCCO1

131 arylation N#Cc1ccc(I)cc1

128 acylation O=C(Cl)CCCl
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126 alkylation OC(C=Cc1ccccc1)c1ccccc1

126 silylation CC[SiH](CC)CC

125 arylation Fc1ccc(Br)cc1

125 acylation COc1ccc(C(=O)Cl)cc1

124 borylation COB(OC)OC

121 1,2 addition CC(=O)c1ccccc1

120 1,2 addition O=C(C(F)(F)F)C(F)(F)F

120 arylation Cc1ccc(B(O)O)cc1

118 alkylation OC(c1ccccc1)c1ccccc1

117 arylation Clc1ccc(Br)cc1

116 acylation O=C(Cl)c1ccc(Cl)cc1

115 alkylation COC(=O)C(=[N+]=[N-])C(=O)OC

114 sulfonylation O=S(=O)(Cl)c1ccccc1

113 alkylation OC(C#Cc1ccccc1)c1ccccc1

112 amination O=S(=O)(c1ccccc1)N(F)S(=O)(=O)c1ccccc1

111 1,2 addition O=C(c1ccccc1)c1ccccc1

111 phosphine oxide synthesis O=[PH](c1ccccc1)c1ccccc1

110 amination Cc1ccc(S(=O)(=O)NN)cc1

110 1,2 addition COC(=O)C(=O)C(F)(F)F

109 amination CCOC(=O)N=NC(=O)OCC

109 acylation Cc1ccc(C(=O)Cl)cc1

108 alkylation c1ccc(C2CO2)cc1

108 borylation CC(C)OB(OC(C)C)OC(C)C

107 acylation CC(C)(C)C(=O)Cl

107 stannylation C[Sn](C)(C)Cl

107 1,2 addition CCCC#CCCC

106 1,4 addition O=C1C=CCCC1

105 1,4 addition O=C1C=CCC1

105 isocyanate addition O=C=Nc1ccccc1

104 arylation O=[N+]([O-])c1ccc(I)cc1

103 1,2 addition O=C1CCCCC1

103 alkylation COC(=O)C(=[N+]=[N-])c1ccccc1

103 phosphonate synthesis CC(C)O[PH](=O)OC(C)C

103 arylation Clc1ccccc1

101 acylation Cc1ccc(C=O)cc1

101 silylation C[SiH](O[Si](C)(C)C)O[Si](C)(C)C

100 alkylation OC12CC3CC(CC(C3)C1)C2

100 acylation O=C(Cl)Cc1ccccc1
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Figure S1: Distribution of dataset (train/valid/test) by number of unique sites in the reactant

S1.2 Details of model architecture

The description of the WLN model is presented here with minimal modification from Coley et al. 1.

S1.2.1 Notation

Symbol Meaning
u, v atoms
N(v) Set of atoms adjacent to v
τ(·) ReLU activation function
σ(·) Sigmoid function

U, V,W,M,P,Q learned matrices in WLN

S1.2.2 Weisfeiler-Lehman Network (WLN)

Weisfeiler-Lehman Network2 is a type of graph convolutional network derived from Weisfeiler-Lehman (WL) graph kernel3.
The architecture is designed to embed the computations inherent in WL graph kernel to learn isomorphism invariant
representation of atoms. The atom representation is computed by iteratively augmenting the representation of adjacent
atoms. Specifically, each atom v is initialized with a feature vector fv indicating its atomic number, formal charge, degree
of connectivity, explicit and implicit valence, and aromaticity. Each bond (u, v) is associated with a feature vector fuv
indicating its bond order and ring status. In each iteration, we updated atom representations as follows:

f lv = τ

U1f
l−1
v + U2

∑
u∈N(v)

τ(V1f
l−1
u + V2fuv)

 (1 ≤ l ≤ L)

where f lv is the atom representation at the lth iteration, initialized with f0v = fv atom features. U1, U2, V1, V2 are
model parameters to be learned, shared across all L iterations. The final local atom representations are computed as

cv =
∑

u∈N(v)

W1f
L
u �W2fuv �W3f

L
v

We refer the reader to 2 for more details about the mathematical intuition and justification of the WLN.
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S1.2.3 Attention Mechanism

The atom embedding cv only record local chemical environment, namely atoms and bonds accessible within L steps from
atom v. Even if L were very large, cv could not encode any information about other reactant molecules, as information
cannot be propagated between two reactant molecules that are disconnected. We argue that it is important to enable
information to flow between distant or disconnected atoms. For example, the reaction center may be influenced by certain
reagents that are disconnected from reactant molecules. In this case, it is necessary for atom representation cv to encode
such distal chemical effects. Therefore, we propose to enhance the model in previous section with an attention mechanism.4

Specifically, let αvz be the attention score of atom v upon atom z. The “global” atom representation c̃v of atom v is
calculated as the weighted sum of all reactant atoms where the weight comes from the attention module:

αvz = σ(uT τ(Pacv + Pacz + Pbbvz))

c̃v =
∑
v

αvzcz

The attention score is computed based on “local” atom representations cv from WLN. σ is the sigmoid activation
function.

S1.2.4 Reaction Site Prediction

The WLN is trained to predict the likelihood that a specific atom will be the favored site in a specific C-H activation
reaction. We denote this likelihood as pt,v, where t is the prediction task and v is the atom. The likelihoods are not
normalized within a molecule to sum to one, but instead are computed using an elementwise sigmoid action σ to produce
a vector pv across prediction tasks.

pv = σ
(
Q τ(Mac̃v + Pacv)

)
The above neural network is jointly optimized with the WLN to minimize the sigmoid cross entropy loss for each

reaction example

−
∑
t

∑
v

yt,v log pt,v + (1 − yt,v) log(1 − pt,v)

where yt,v = 1 iff v is the atom undergoing C-H activation for task t.

S1.3 Inclusion of reagents

Including the reagents as part of the input was tested to see if the accuracy of the model could be improved. The data was
further filtered by removing any atom mapping from reagents, and confirming all of the recorded reagents can be parsed
by RDKit. The benefit would be that better accuracy could be achieved but with the trade-off of the end user having to
provide reagents at prediction time. The model performed marginally better with the reagents included but still do not
capture drastic changes in selectivity based on very specific conditions. However, care should be taken to compare these
results directly to the model that does not include reagents. The data set that includes reagents has multiple reactions
that have the same outcome but use different reagents and thus is slightly different than the data set used in the multitask
model without reagents.

Table S2: Results for inclusion of reagents in training
Model Validation Seta (%) Test Seta (%)

With Reagents 89/94 87/92
a Reported as top 1 accuracy / mean reciprocal rank

S2 RegioSQM comparison

RegioSQM predictions include all sites that are within a threshold of the lowest energy carbocation conformer (in this
case 1 kcal/mol) which allows for multiple predictions in each molecule. The WLN methodology accuracy is based on
the top 1 atom score which cannot be directly compared. An analysis is performed where the accuracy is based on how
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many sites that that RegioSQM predicts. For example if RegioSQM predicts 3 sites that are all within 1 kcal/mol of the
lowest energy conformer, then the accuracy for the WLN is relaxed to if the top 3 predictions include the correct site.
The results are grouped into two categories 1) direct comparison of the top 1 predictions, filtered to include only examples
where RegioSQM predicts one site, and 2) comparison of the top 2 or 3 sites for both methodologies when RegioSQM
predicts multiple sites. Also included in Table S3 in the column 2 or 3 sites, is the top 1 accuracy of that subset for the
WLN. Interstingly, the top 1 accuracy is not much lower than when RegioSQM has 2 or 3 sites it had chosen.

Table S3: Comparison to RegioSQM5 on a random subset of 494 bromination reactions from our test set. Performance is
divided into two columns according to the number of sites RegioSQM believes to be equally likely.

1 sitea (%) 2 or 3 sitesa (%) Time (12 CPU’s)
RegioSQM5 86.7 74.2 >10 days

WLN 87.9 71.0b/84.7c 6.3s
aNumber of sites predicted by RegioSQM, bReported as top 1 accuracy, cReported as top 2 or 3 accuracy

S3 (Additional) Results

Initial hyperparameter search is shown in Table S4. Intermediate values between entries 1 and 2 (hidden size of 300,
learning rate of 0.003, and depth of 5) were chosen for further comparison between different model architectures and is
outlined in Table S5. Performance is also broken down by number of available symmetric reaction sites in the molecule
(the data distribution broken down by number of sites is shown in Figures S2 and S3. Batch size did not impact accuracy,
so for the hyperparameter search, the batch size was set to 20 and the data was randomly shuffled at the beginning of
each epoch.
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Table S4: Additional hyperparameter optmization
entry WLN depth hidden learning rate multitask validation accuracy (%)

1 5 512 0.00100 True 86.6
2 5 256 0.00050 True 86.2
3 4 512 0.00050 True 85.9
4 3 512 0.00050 True 85.7
5 3 512 0.00100 True 85.6
6 4 256 0.00050 True 85.5
7 5 256 0.00100 True 85.5
8 4 512 0.00100 True 85.4
9 3 256 0.00100 True 85.3
10 5 512 0.00009 True 85.3
11 4 256 0.00100 True 85.3
12 5 128 0.00100 True 85.1
13 4 128 0.00050 True 85.1
14 5 512 0.00050 True 84.9
15 3 256 0.00050 True 84.9
16 5 128 0.00050 True 84.8
17 4 64 0.00100 True 83.8
18 4 128 0.00100 True 83.8
19 4 512 0.00009 True 83.6
20 3 128 0.00100 True 83.4
21 5 64 0.00100 True 83.1
22 3 128 0.00050 True 82.9
23 5 64 0.00050 True 81.6
24 3 512 0.00009 True 81.5
25 5 256 0.00009 True 81.3
26 4 64 0.00050 True 81.2
27 3 64 0.00100 True 81.2
28 4 256 0.00009 True 80.2
29 4 256 0.01000 True 80.1
30 3 512 0.01000 True 79.9
31 4 512 0.01000 True 79.9
32 5 64 0.01000 True 79.7
33 5 512 0.01000 True 79.3
34 5 256 0.01000 True 78.8
35 3 64 0.00050 True 78.8
36 3 256 0.01000 True 78.1
37 5 128 0.00009 True 78.0
38 3 64 0.01000 True 77.3
39 5 128 0.01000 True 77.1
40 4 64 0.01000 True 75.9
41 4 128 0.00009 True 75.9
42 4 128 0.01000 True 75.4
43 3 256 0.00009 True 75.2
44 3 128 0.01000 True 72.6
45 5 64 0.00009 True 71.8
46 3 128 0.00009 True 71.3
47 4 64 0.00009 True 70.0
48 3 64 0.00009 True 66.3
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Table S5: Additional results
Modelb Baseline Hidden size Added Features Validation accuracyb (%)

Single-task yes 300 Yes 46.7
Single-task no 100 no 84.4
Single-task no 300 no 86.4
Single-task no 100 yes 83.3
Single-task no 300 yes 84.6
Multitask yes 300 no 21.3
Multitask yes 300 yes 49.0
Multitask no 300 no 87.0
Multitask no 300 yes 87.6

aA depth of 5 was used for the WLN with a lr of 0.003. bReported as top 1 accuracy.

Figure S2: Performance of the validation set by number of sites
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Figure S3: Performance of the test set by number of sites
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S3.1 Examples of predictions

One possible application of the multitask model is in late stage functionalization of aromatics. The model would allow a
chemist to view some reactions that give a high probability to be site selective. However, these scores are not indicative of
reaction yield, only the probability for that site to be functionalized. The synthesis workflow would still require chemists
to decide whether protections/deprotections would be needed to avoid functional group interactions with catalysts or
reagents. The first example in Figure S4 shows that it S1 would be possible to access two different sites with various
reactions. Also shown are examples that would not give selectivity or have low probaliity of accessing any site. If a
chemist wants another site on S1 to be functionalized then they could go one step back in the synthetic sequence and run
selectivity predictions. Figure S5 shows one retrosynthetic suggestion that breaks the molecule into S2 and another site
on the molecule could be selectively functionalized. The final example in Figure S6 demonstrates again that on S3 there
are some reactions that give high probability for the highlighted site and there are often many that give a low probability
which would likely not be routes to be executed.

Figure S4: Example 1
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Figure S5: Example after one step retrosynthesis
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Figure S6: Example 2
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S3.2 Examples of failed predictions

Below are examples of failed predictions. There are 9 tasks that have accuracy below 50%. Table S6 shows the tasks that
have poor test accuracy. These low accuracies are generally attributed to the time-split validation we use for the dataset.
For example, for the task CCOC(=O)C(F)(F)Br which has 0% accuracy on the test set, all 17 test examples are from a
substrate scope where a new catalyst/ligand system was developed to alter selectivity. Examples of failed predictions are
grouped by their task and drawn below.

Table S6: Tasks with low accuracy
Task Ntest top-1 accuracy (%)

CCOC(=O)C(F)(F)Br 17 0.0
O=C=Nc1ccccc1 11 9.1
CC(=O)c1ccccc1 13 15.3

C#Cc1ccccc1 22 36.3
OB(O)c1ccccc1 40 37.5

CC(=O)O 46 43.4
C=Cc1ccccc1 49 44.9
C=CC(C)=O 35 45.7

Cc1ccc(B(O)O)cc1 12 50.0

Figure S7: Failed predictions for task CCOC(=O)C(F)(F)Br. Reaxys ID’s A) 44846829 B) 44846838 C) 44846844 D)
44846850 E) 44846862
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Figure S8: Failed predictions for task O=C=Nc1ccccc1. Reaxys ID’s A) 44164716 B) 44164728 C) 44164741

Figure S9: Failed predictions for task CC(=O)c1ccccc1. Reaxys ID’s A) 42571625 B) 43419010 C) 43419015 D) 43419013
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Figure S10: Failed predictions for task C#Cc1ccccc1. Reaxys ID’s A) 44761859 B) 43805454 C) 43420046 D) 42092979

Figure S11: Failed predictions for task OB(O)c1ccccc1. Reaxys ID’s A) 43473813 B) 43905584 C) 44346055
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Figure S12: Failed predictions for task CC(=O)O. Reaxys ID’s A) 44326647 B) 44447392 C) 44461717

Figure S13: Failed predictions for task C=Cc1ccccc1. Reaxys ID’s A) 42799511 B) 43106440 C) 43644703 D) 44151514
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Figure S14: Failed predictions for task C=CC(C)=O. Reaxys ID’s A) 35555246 B) 37544015 C) 40982653

Figure S15: Failed predictions for task Cc1ccc(B(O)O)cc1. Reaxys ID’s A) 44346052 B) 44346091
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