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A. Experimental Procedure

A.1. Analytical IR spectra and integration method

Analytical IR spectra and details on the integration method are exemplarily provided in 
Figure S1. The evaluation of the characteristic IR band is based on a calculation of 
absorption height. This is illustrated in Figure S1 for benzaldehyde 1 as starting material 
(decreasing band at 1680−1720 cm−1) and n-benzylidenebenzylamine 3 (increasing band 
at 1620−1660 cm−1).

Figure S1. Exemplary analytical IR spectra of benzaldehyde 1 and 
n-benzylidenebenzylamine 3 at different concentrations.  

Legend: ∙∙∙∙∙∙ integration method based on calculation of absorption height.

a) b)

Figure S2. Calibration curves. a) Benzaldehyde 1. b) n-Benzylidenebenzylamine 3. Each 
experimental data point was determined by five repeated measurements, with every 

measurement consisting of 32 scans. Standard deviations were calculated for all data points. 
Averaged across data points, it amounted to 4 %.
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A.2. Workflow of optimisation procedure

Figure S4 illustrates a schematic workflow of the optimisation procedure. The presented 
self-optimising system integrates a flow microreactor with automatised devices (pumps 
and thermostats) and real-time reaction monitoring through inline FT-IR spectroscopy. 
Pumps and thermostats are controlled via a laboratory automation system (HiTec Zang 
GmbH, Germany); FT-IR measurements by OPUS, a spectroscopy software from Bruker, 
United States. The system is equipped with a real-time optimisation procedure. Two 
optimisation strategies were tested: the modified Simplex algorithm and Design of 
Experiments. Both optimisation strategies are applied within the same experimental 
setup, only their experimental sequences differ. In case of the modified Simplex 
algorithm, real-time optimisation works as feedback in flow. During DoE optimisation, 
defined experimental plans are executed. Either fully automated experimental sequence 
is coded in MATLAB. However, MATLAB does not only control the optimisation 
strategies, but calculates the objective function and transfers values for pumps and 
thermostats through communication with the laboratory automation system as well. 
Besides, the laboratory automation system controls pumps and thermostats, 
communicates with OPUS via an OPC interface, and transfers analytical results to 
MATLAB.

The optimisation procedure starts by defining the experimental setup including the 
objective function, reactor volume, experimental space, and number of variable 
parameters. One of three different objective functions can be chosen: maximum product 
concentration, maximum production quantity, and minimum costs per product unit. The 
whole system is completely automatised, whereby also remaining volumes of starting 
materials are calculated permanently. Hence, the optimisation procedure stops 
autonomously whenever one of the starting materials is depleted. The procedure can then 
be restarted at this point. After defining the experimental setup, the MATLAB sequence 
continues by proposing the experimental conditions. In case of the Simplex algorithm, a 
randomly chosen initial simplex is generated, see details on this approach in main 
document’s chapter “numerical evaluation of optimisation methods, start simplex set to 
axes”. In contrast, if DoE optimisation is performed, defined experimental plans are 
executed, and all experimental conditions are transferred to the laboratory automation 
system in sequence. Then, the calculated values are transferred to pumps and thermostats. 
It should be noted that MATLAB operates with stoichiometric ratios and residence times, 
whereby the laboratory automation system works with volumetric flow rates, so that 
values must always be translated. When experimental conditions are applied in pumps 
and thermostats, a waiting time until reaching constant reaction temperature and steady-
state conditions is estimated. Meanwhile, IR spectra are continuously monitored, and 
OPUS performs a defined integration method of the characteristic product band. These 
values are transferred to the laboratory automation system via an OPC interface in real 
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time. As soon as steady-state is reached (IR value remains constant), the laboratory 
automation system transfers the actual IR value to MATLAB, where the objective 
function is calculated based on this result. Thereafter, all related experimental conditions 
are documented. 

In case of the Simplex algorithm, optimisation works with feedback in flow. Thus, once 
the reaction is finished and the experimental sequence has conveyed the reaction results 
to the optimisation algorithm, new experimental conditions are proposed, aiming to 
maximize or minimize the objective function. This process is repeated iteratively until 
eventually converging to a local optimum, without any human intervention. Simplex 
optimisation stops after executing the previously defined maximum number of 
experiments, or when the value of the objective function varies only within a defined 
range anymore (local optimum is found). During Simplex optimisation, it may happen 
that experimental conditions are proposed that lie outside the experimental space. In that 
case, the related iteration step is skipped and new experimental conditions are suggested, 
until Simplex proposes conditions that lie within the allowed experimental space once 
again (Figure S3).

Figure S3. Simplex optimisation of two variable parameters with product concentration as 
objective function: Simplex progress. Legend: colouring of simplexes corresponds to simplex 

movement: yellow – reflection, green – expansion, red – contraction, orange – contraction with 
change of movement direction (negative residence times are not physically appropriate, Simplex 

responds to such values by suggesting new experimental conditions).

In case of DoE optimisation, defined experimental plans are executed, whereby 
experimental conditions are transferred to the laboratory automation system one by one. 
After a first DoE run, used to screen the whole experimental space, a response surface 
model is calculated, and optimal conditions are determined. Based on these conditions, a 
second DoE run is established around the optimal value of the first DoE run. This new 
experimental plan then contains the optimum of the first DoE as central point. Its size is 
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defined through a variable delta that reduces the plan to 20 % of the size of the first DoE. 
Subsequently, the second DoE is performed, and another surface response model is built 
to refine the search for a global optimum.

The presented self-optimising system is designed as transferable modular concept. 
Optimisation strategies can easily be changed, and are all performed in a fully automated 
manner. This allows for considerable flexibility of the system, whilst ensuring high 
reproducibility and safety.

a) 

b)  

Figure S4. Schematic workflow of optimisation procedure.
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A.3. Modified Simplex Algorithm

The Nelder−Mead Simplex Algorithm1 is a gradient-free, direct search optimisation 
method. During optimisation, input variables (e.g., stoichiometric ratio, residence time, 
and reaction temperature) are transformed into an output variable to be optimised (e.g., 
product yield, productivity, and costs), whereby a given chemical reaction is treated as a 
black-box. The method proceeds by exploring the experimental space with n-dimensional 
simplexes, where n is the dimension of the particular optimisation problem, hence the 
number of input variables. The simplexes are constructed and permanently replaced in 
order to steer the process towards optimal reaction conditions. In the beginning, an initial 
simplex consisting of a convex polytope with n+1 vertices, where each vertex represents 
an experiment, is developed. Thus, a simplex in one dimension constitutes a line, whereas 
in two dimensions, it is represented by a triangle, in three dimensions, it is represented by 
a tetrahedron, and hyperpolyhedrons characterise multiple dimensions2–5.

Optimisation then proceeds through ranking the n+1 vertices of the simplex according to 
their objective function values. The worst result is replaced by a new vertex that is 
supposed to deliver a better result, while creating a novel simplex. By changing multiple 
variables at a time and in an iterative fashion, it is possible to steer the process to a region 
within the experimental space that results in the optimum response. As soon as the 
objective function value cannot be enhanced anymore, a local optimum is found4–8.

The original basic algorithm is the simplest form of Simplex optimisation, since it is only 
based on a reflection movement to replace poor results. In contrast, the modified 
algorithm allows a greater range of motions by adding expansion and contraction 
movements. Optimisation efficiency can thus be improved, facilitating faster simplex 
development and reducing the number of experiments needed to identify optimal 
conditions. Figure S5 schematically displays possible movements of the modified 
Simplex algorithm, including reflection, expansion, and contraction3, 5–7.

However, Simplex optimisation comes with the drawback of being only a local search 
technique. The Simplex method always converges to a local optimum, which does not 
necessarily correspond to the absolute one. To overcome this drawback, it is 
recommended to apply different initial simplexes during the optimisation process5, 6, 8, 9.
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Figure S5. Movements of Modified Simplex Algorithm: reflection, expansion, and contraction. 
Legend: R – reflection point, E – expansion point, CW – contraction point without change in 

movement direction, CR – contraction point with change in movement direction.

A.4. Design of Experiments

The technique of ‘Design of Experiments’ is a statistical approach to multidimensional 
reaction optimisation10–12. As result of DoE optimisation, the effect of each variable, and 
potential interactions between variables on the objective function are determined. 
Multidimensional DoE optimisation enables evaluation of a large number of reaction 
parameters in a relatively small number of experiments depending on the chosen 
experimental design. Hence, experiments are planned intelligently so that finally a 
response surface model can be built as mathematical expression displaying the whole 
experimental space and allowing for identification of optimal conditions11, 13.

Selection of experiments is based on the following three steps13–16: 

1. Definition of objective function and optimisation goal, e.g., yield, productivity, costs.
2. Selection of variable parameters: After identifying variable parameters that influence 

the objective function, the experimental space has to be defined. When specifying 
parameter ranges, it should be noted that, if factor ranges are too small, optimum 
conditions could lie outside the area of study. However, factor ranges should neither 
be oversized since otherwise the reaction could not work anymore. Number of 
experiments strongly depends on number of variable parameters. Thus, to reduce time 
and costs, only those parameters should be included that have a real impact on the 
objective function.
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3. Choice of DoE strategy and experimental design: The experimental design specifies 
the arrangement of experimental points within the experimental space. Based on this 
experimental plan, experiments are performed during DoE optimisation.

DoE strategies are generally grouped in screening and response surface designs12, 14. 
Screening designs aim at exploring the entire experimental space, while simultaneously 
identifying those factors that wield the largest influence on the response. This strategy is 
most effective when applied at the beginning of a study, when little knowledge about a 
process is available, helping to minimize the efforts required to identify optimal reaction 
conditions in a second step. In contrast, response surface designs are mainly applied 
within optimisation procedures, such as central composite (CCD) and Box–Behnken 
design17, 18. Both strategies are based on experimental plans whose experimental runs are 
uniformly distributed around a central point. Especially the multidimensional 
optimisation of continuous variables, e.g. (stoichiometric ratio, residence time, and 
reaction temperature) thereby becomes possible. Finally, response surface designs aim at 
describing the experimental space through a nonlinear mathematical model12, 13, 19, 20.

Based on this model, a response surface can be expressed as function of the variable 
factors. This polynomial equation can be written with (Eq. 1) and without (Eq. 2) 
interactions between the parameters21–23:

f(x,y,z) =  a0 +  (a ∙ x2 +  b ∙ y2 +  c ∙ z2) +  (d ∙ x +  e ∙ y +  f ∙ z) +  (g ∙ x ∙ y +  h ∙ x ∙ z +  i ∙ y ∙ z)

(1)

f(x,y,z) =  a0 +  (a ∙ x2 +  b ∙ y2 +  c ∙ z2) +  (d ∙ x +  e ∙ y +  f ∙ z) (2)

These mathematical models allow for interpreting functional relations between response 
and experimental variables, and for predicting optimal reaction conditions10, 16, 24.
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B. Numerical Evaluation of Optimisation Methods

B.1. Kinetics of theoretical reaction model

Performances of modified Simplex algorithm and Design of Experiments as optimisation 
strategies were evaluated using a theoretical chemical model reaction (eq. 3).

cA +  cB → cP → cSP (3)

In a second order reaction, starting materials A and B form the desired product P. 
However, in a consecutive reaction, product P is transformed into undesired side product 
SP.

Differential equations describing the reaction kinetics of this model reaction are as 
follows:

dcA

dt
 =  RA =   -  k1 ∙  cA ∙  cB (4)

dcB

dt
 =  RB =   -  k1 ∙  cA ∙  cB (5)

dcP

dt
 =  RP =   k1 ∙  cA ∙  cB -  k2 ∙  cP (6)

dcSP

dt
 =  RSP =   k2 ∙  cP (7)

with calculation of reaction rate coefficient ki based on reference temperature Tref :

k𝑖(T) =  ki,ref ∙  exp[ -
EA,i

Rideal
 ∙  (1

T
 -  

1
Tref

)] (8)

Table S1 lists the reaction parameters of the described theoretical model including the 
chosen experimental space (minimum and maximum values of all variable parameters) 
and kinetic data of both, the main and the side reaction.
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Table S1. Reaction parameters (experimental space and kinetic data) of the theoretical model 
reaction.

Parameters Minimum value Maximum value

Reaction temperature T [K] 230 300

Residence time τ [s] 0 600

Stoichiometric ratio of starting materials 

cA

cB
0.1 1.5

Reaction rate coefficient of main reaction k1,ref [L mol−1 s−1] 0.01

Activation energy of main reaction EA,1 [kJ mol−1] 60

Reaction rate coefficient of side reaction k2,ref [s−1] 0.001

Activation energy of side reaction EA,2 [kJ mol−1] 80

Reference temperature Tref [K] 273

Initial concentration cB,0 [mol L−1] 1

Initial concentration cP,0 [mol L−1] 0

Initial concentration cSP,0 [mol L−1] 0

Concentration profiles of all involved components of the theoretical model reaction are 
exemplarily presented in Figure S6 for a constant reaction temperature of −8 °C and a 
stoichiometric ratio of starting materials amounting to 1.5.

Figure S6. Concentration profiles of theoretical model reaction’s components, exemplarily 
presented for a reaction temperature of −8 °C and a stoichiometric ratio of 

starting materials of 1.5.
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B.2. Numerical evaluation of Simplex Algorithm

Different opportunities to construct start simplexes during Simplex optimisation were 
numerically evaluated. One of them was a maximum start simplex which constitutes a 
start simplex that was placed over the whole reaction space. With two variable parameters 
(temperature, and residence time), maximum start simplex results in four possible 
configurations. The corner points of these start simplexes are listed in Table S2. In 
contrast, with three variable parameters (temperature, residence time, and stoichiometric 
ratio of starting materials) 16 possibilities arise, but only four of them where investigated 
as described in Table S3.

Table S2. Corner points of tested maximum start simplexes with two variable optimisation 
parameters.

Corner points 1 2 3

Simplex option No.1 1
27

600
−43

600
27

[s]
[°C]

Simplex option No.2 1
27

600
−43

1
−43

[s]
[°C]

Simplex option No.3 1
−43

600
27

600
−43

[s]
[°C]

Simplex option No.4 1
−43

600
27

1
27

[s]
[°C]

Table S3. Corner points of tested maximum start simplexes with three variable optimisation 
parameters.

Corner points 1 2 3 4

Simplex option No.1
0.1
1

−43

1.5
600
27

0.1
600
−43

1.5
1
27

[mol L−1]
[s]

[°C]

Simplex option No.2
0.1
1

−43

1.5
600
27

0.1
600
−43

0.1
1
27

[mol L−1]
[s]

[°C]

Simplex option No.3
0.1
1

−43

1.5
600
27

0.1
600
−43

0.1
600
27

[mol L−1]
[s]

[°C]

Simplex option No.4
0.1
1

−43

1.5
600
27

0.1
600
−43

1.5
1

−43

[mol L−1]
[s]

[°C]
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B.3. Numerical evaluation of Design of Experiments

In order to evaluate the performance of Design of Experiments as optimisation strategy, 
different experimental designs were compared, among them Central Composite Design, 
full and fractional factorial, and Box Behnken Design. The quality of all calculated 
optimal solutions based on the resulting surface response models was examined. This was 
done through determining the optimal reaction conditions from all surface response 
models and their corresponding optimal product yields. The optimal parameter 
combination was then transferred to the kinetic model of the theoretical reaction to 
indicate real product yield. The results are compared in Figure S7 for all three 
experimental designs, with and without consideration of parameter interactions, 
respectively.

Figure S7. Results of numerical evaluation of different DoE strategies. Calculated product yield 
from resulting surface response model (with and without consideration of parameter 
interactions) is displayed and compared to real value received from kinetic model.

Legend:  - - - -  quality criterion of product yield >70 %
x  – real value for product yield from kinetic model at conditions resulting from DoE optimisation. 

As parameter interactions are included, both, full and fractional factorial CCD, result in 
maximum product yields of nearly 100 % and represent real yield (predicted by the 
kinetic model) only poorly. In other words, high discrepancies between surface response 
model and kinetic model occur. It has to be noted that those high yields amounting to 
nearly 100 % are theoretical values that cannot be reached in reality as far as the model 
reaction is concerned. Instead, they result from a mathematical expression of the surface 
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response model. In fact, the mathematical equation could even lead to yields greater than 
100 %, but the program used prevents such values. 
In contrast, Box Behnken design demonstrates a superior performance compared to CCD 
when parameter interactions are implemented. This becomes apparent as the calculated 
product yield values that result from the surface response model are more realistic. 
However, deviations from real yield as indicated by the kinetic model nonetheless amount 
to around 30 %, and are too large in magnitude to be used for a reliable optimisation 
procedure.

In order to estimate relevance and meaningfulness of the inclusion of parameter 
interactions, surface response models were calculated without consideration of parameter 
interactions for all three experimental designs. It can be shown that involvement of 
parameter interactions has a considerable impact on surface response modeling. Without 
parameter interactions, optimal theoretical yields do not accomplish unrealistic values of 
around 100 % anymore, and discrepancies between surface response model and kinetic 
model are diminished for all experimental designs. Therefore, especially regarding 
chemical reactions, parameter interactions should rather be excluded, as neither physical 
nor chemical justifications exist for including terms of parameter interactions within 
response surface models.

Under these circumstances, fractional factorial CCD demonstrates a good performance in 
predicting optimal and reasonable values for product yield, while simultaneously 
reducing the number of experiments needed.
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C. Experimental Evaluation of Optimisation Methods

C.1. Theoretical results for production quantity and costs per kg of product

As proof of concept, the reaction of benzaldehyde 1 with benzylamine 2 to form n-
benzylidenebenzylamine 3 was experimentally investigated. Three different optimisation 
goals were experimentally evaluated, e.g. maximum product concentration, maximum 
production quantity, and lowest possible costs. As the underlying kinetics are known25, 
theoretically expected optimisation results can be calculated. 

Figure S8 displays the theoretical results of production quantity as function of residence 
time and stoichiometric ratio (two variable parameters).

Figure S8. Theoretical values for production quantity as function of stoichiometric ratio and 
residence time.

The theoretically expected optimal result regarding a maximum production quantity 
amounts to 5.8 mmol min−1, and is obtained at a stoichiometric ratio of 1.0 and a residence 
time of 0.8 min.
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Minimum costs per kg of product were approximated using a cost function (eq. 9) 
consisting of a term describing raw material costs and a fixed costs portion. Fixed costs 
were estimated to amount to 30 % of the raw material costs that occur at an output rate of 
8.2 g h−1, which is in line with cost estimates that are commonly used in industrial 
contexts.

costs per kg of product  =  
costs for starting materials +  fixed costs 

kg of product
(9)

Raw material costs amounted to 44 € mol−1 for Benzaldehyde 1 and 23 € mol−1 for 
Benzylamine 2. The theoretical results of costs per kg of product are illustrated in Figure 
S9 as function of residence time and stoichiometric ratio (two variable parameters).

Figure S9. Theoretical values for product costs as function of stoichiometric ratio and residence 
time.

The theoretically expected result regarding minimum costs amounts to 129 € kg−1, and is 
obtained at a stoichiometric ratio of 1.0 and a residence time of 0.6 min.
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Comparison of absolute values of determined minimum costs per kg of product

It should be noted that minimum costs per kg of product constitute relative values rather 
than absolute ones. Nevertheless, if the absolute values resulting from Simplex and DoE 
optimisation are compared, slight discrepancies can be recognized. 

Simplex and DoE optimisation are based on different approaches to identify optimal 
reaction conditions. Hence, the Simplex method proceeds by constructing Simplexes that 
are permanently replaced in order to steer the process towards optimal reaction 
conditions. In contrast, the results of DoE optimisation are obtained from surface response 
models, thus from a mathematical expression describing the experimental space.

The theoretically expected minimum costs amount to 129 € kg−1, and are obtained for a 
stoichiometric ratio of 1.0 and a residence time of 0.6 min. Therefore, minimum costs 
arise at rather small residence times that lie close to the lower boundary of the 
experimental space (the chosen microreactor setup allows to investigate residence times 
ranging from 0.5 to 6 min). Exploring experimental points that are located close to the 
lower or upper boundary poses challenges in case of both optimisation strategies. 
Concerning DoE optimisation, the surface response model can be extrapolated to those 
boundary values. Conversely, as soon as the Simplex algorithm constructs a Simplex that 
lies too close to the boundary, it responds to these values by suggesting new experimental 
points (that lie further away from the boundary). Therefore, in case of Simplex 
optimisation, it is challenging to obtain absolute values of minimum costs per kg of 
product.
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C.2. Multidimensional Simplex optimisation of three variable parameters

During multidimensional optimisation of three variable parameters, stoichiometric ratio, 
residence time, and reaction temperature were optimised. Exemplary for maximum 
product concentration as optimisation goal, the simplex progress and the progress of the 
objective function over the number of iterations are displayed in Figure S10.

a) b)

Figure S10. Multidimensional Simplex optimisation of three variable parameters with product 
concentration as objective function. a) Simplex progress. Legend: yellow – reflection, green – 

expansion, red – contraction, orange – contraction with change of movement direction.
b) Progress of objective function over number of experiments. 

Legend:  values of start simplex.

C.3. Influence of varying start simplexes on Simplex optimisation result

The influence of varying start simplexes on the result of Simplex optimisation was 
studied. Hence, initial values were chosen randomly, and six repetitions of the same 
optimisation procedure, only with different start simplexes, were conducted. Details on 
the investigated start simplexes and all individual results are provided in Figure S11.

a) b) 

Figure S11. Influence of varying start simplexes to optimisation result. a) Initial values of two-
dimensional start simplexes. b) Results for all optimisation runs regarding their determined 

optimal values for stoichiometric ratio and residence time.
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C.4. Optimisation using Design of Experiments

The reaction of benzaldehyde 1 with benzylamine 2 was used as proof of concept to 
experimentally investigate Design of Experiments as optimisation strategy. During 
multidimensional optimisation of two respectively three variable parameters, two 
different optimisation goals were examined: maximum product concentration and 
minimum costs per kg of product.

In terms of product concentration as objective function, the surface response models 
obtained by the first and second DoE run, while optimising three variable parameters 
(stoichiometric ratio, residence time, and reaction temperature), are exemplarily provided 
in Figure S12 and Figure S13.

a) b) 

Figure S12. Optimisation of product concentration with three variable parameters using DoE, 
results for first DoE run. 

a) Experimental data points, colour scheme represents product concentration as function of 
variable parameters (stoichiometric ratio, residence time, and reaction temperature). 

b) Resulting surface response model (displayed with cut surfaces).

 

a) b)

Figure S13. Optimisation of product concentration with three variable parameters using DoE, 
results for second DoE run. 

a) Experimental data points, colour scheme represents product concentration as function of 
variable parameters (stoichiometric ratio, residence time, and reaction temperature). 

b) Resulting surface response model (displayed with cut surfaces).
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In terms of minimum cost as optimisation goal, the surface response models obtained by 
the first and second DoE run, while optimising two variable parameters (stoichiometric 
ratio and residence time), are exemplarily provided in Figure S14. Besides, the surface 
response models obtained by the first and second DoE run, while optimising three 
variable parameters (stoichiometric ratio, residence time, and reaction temperature) are 
displayed in Figure S15 and Figure S16.

a) b) 

Figure S14. Optimisation of costs per kg of product with two variable parameters using DoE. 
a) First DoE run for screening of whole experimental space. 

b) Second DoE run to refine optimisation.

a) b)

Figure S15. Optimisation of costs per kg of product with three variable parameters using DoE, 
results for first DoE run. 

a) Experimental data points, colour scheme represents product concentration as function of 
variable parameters (stoichiometric ratio, residence time, and reaction temperature). 

b) Resulting surface response model (displayed with cut surfaces).
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a) b)

Figure S16. Optimisation of costs per kg of product with three variable parameters using DoE, 
results for second DoE run. 

a) Experimental data points, colour scheme represents product concentration as function of 
variable parameters (stoichiometric ratio, residence time, and reaction temperature). 

b) Resulting surface response model (displayed with cut surfaces).

Finally, the overall measuring accuracy of DoE optimisation was determined. For this 
purpose, the optimisation procedure with product concentration as objective function was 
repeated six times at the centre point of the first CCD run and its outer point, both for two 
and three variable parameters. Results are displayed in Table S4.

Table S4. Reproducibility of DoE optimisation strategy.

Relative standard 
deviations

Optimisation of two 
variable parameters

Optimisation of three 
variable parameters

Centre point 0.3 % 0.3 %

Outer point 0.9 % 0.2 %

In all cases, relative standard deviations amount to values lower 1 %. Hence, DoE 
optimisation offers high reproducibility.
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D. Real-Time Optimisation

D.1. Disturbance of the chemical process through breakdown of temperature control

To study the third type of disturbance, a breakdown of temperature control, real-time 
optimisation was extended to cover three variable parameters: stoichiometric ratio, 
residence time, and additionally reaction temperature. A breakdown of temperature 
control was then simulated. Hence, at optimal conditions for the reference case 
(stoichiometric ratio of 1.0, high residence time of around 4 min, and reaction temperature 
of 38 °C, resulting in a maximum product concentration of around 1.8 mol L−1) three 
sharp temperature decreases were induced. The first disturbance led to a reaction 
temperature of 15.4 °C, the second one to 15.2 °C, and the third to 14.7 °C.

Based on previously obtained kinetic data25, the temperature dependence of the reaction 
can be derived. Therefore, a decrease in product concentration is to be expected in the 
event of a temperature control breakdown. However, as illustrated in Figure S17, the 
value of the objective function decreases only slightly, and already reaches its previous 
level again during the next iteration cycle. This indicates that the process is hardly 
vulnerable to malfunctions in temperature control. A severe temperature control 
breakdown merely causes a longer waiting time until the optimal reaction temperature of 
38 °C is reached once again. In contrast, the stoichiometric ratio and residence time 
remain completely unaffected, in line with expectations.

Figure S17. Real-time response of Simplex algorithm towards breakdown of temperature 
control (reference case: concentration of starting materials benzaldehyde 1 and benzylamine 2 

amounting to 4 mol L−1, optimal reaction conditions at a stoichiometric ratio of 1.0, a high 
residence time of around 4 min, and a reaction temperature of 38 °C).

Legend: ◊ event of breakdown of temperature control.
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D.2. Disturbance of chemical process through inaccurate dosage of starting materials

An inaccurate dosage of starting materials was induced through simulating a defect of the 
syringe pump: Thereby, the flow rate of one of the starting materials was halved. It should 
be noted that the actual flow rate consisted of half of the flow rate that was transmitted to 
the Simplex Algorithm. Hence, a recalculation of actual flow rates was necessary. 

Once again, the disturbance was simulated on the basis of an initial situation featuring 
equal initial concentrations of both starting materials (concentration of benzaldehyde 1 
and benzylamine 2 amounting to 4 mol L−1 respectively) and accurate flow rates. Once 
the process had identified optimal reaction conditions (stoichiometric ratio of 1.0 and high 
residence time of 4 min at a constant reaction temperature of 25 °C, resulting in a 
maximum product concentration of 1.8 mol L−1), the inaccurate dosage of one of the 
starting materials was induced. Table S5 provides an overview of the investigated 
disturbances.

Table S5. Overview of disturbances of the chemical process through inaccurate dosage of 
starting materials (benzaldehyde [1], benzylamine [2]).

Inaccurate dosage of starting 
materials

Expected new 
stoichiometric 

value

Stoichiometric 
value reached after

real-time 
optimisation

Number of 
experiments 

required to offset 
disturbance

halved flow rate of [1] 2.0 2.0 9

halved flow rate of [2] 0.5 0.5 8
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Exemplarily for a disturbance through halving the flow rate of benzaldehyde 1 (initial 
concentrations of benzaldehyde 1 and benzylamine 2 are held constant at 4 mol L−1), 
Figure S18 illustrates the progression of simplexes during real-time optimisation.

Figure S18. Simplex progress during real-time optimisation. 
a) Progress under standard conditions (initial concentrations of benzaldehyde 1 and 

benzylamine 2 amounting to 4 mol L−1 respectively, both starting material with accurate flow 
rates).

b) Simplex response towards inaccurate dosage of benzaldehyde 
(flow rate of benzaldehyde 1 is halved).

Legend: colouring of simplexes corresponds to simplex movement: yellow – reflection, green – 
expansion, red – contraction without change in movement direction, orange – contraction with 

change in movement direction, purple – start of adaptation phase after disturbance has occurred.

Simplex size increases as soon as an inaccurate dosage of benzaldehyde 1 affects the 
objective function in an adverse manner, and the algorithm consequently attempts to 
offset this impact through converging to a new optimal stoichiometric ratio. Hence, a 
stoichiometric ratio of 2.0 yields a much better result compared to a stoichiometric ratio 
of 1.0 that proved ideal for the initial situation. This is in line with expectations. 

However, it should be noticed that simplexes seem to navigate towards lower residence 
times after the disturbance is induced. This deviates from real conditions, as the Simplex 
algorithm overestimates flow rates. As mentioned before, the actual residence times are 
higher than the displayed ones (after simulating a defect of the syringe pump), and have 
to be recalculated.
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Figure S19 illustrates the progression of the objective function (product concentration) 
during real-time optimisation with inaccurate dosage of benzaldehyde 1, and the related 
parameter combinations.

a) b) 

Figure S19. Disturbance of the chemical process through inaccurate dosage of benzaldehyde 1 
(flow rate of benzaldehyde 1 is halved).

a) Real-time response of Simplex algorithm towards inaccurate dosage process (product 
concentration resulting from individual experimental runs).

b) Product concentration as function of stoichiometric ratio and residence time. Legend: at a) 
optimal reaction conditions for reference case, at b) Simplex response to disturbance through 

halving benzaldehyde’s flow rate, resulting in optimal reaction conditions once again.

As soon as the disturbance occurs through halving the flow rate of benzaldehyde 1, the 
product concentration decreases sharply, and increases again when real-time optimisation 
intervenes. This rebound in product concentration up to the initial situation’s value is 
accompanied by an increase of the stoichiometric ratio from 1.0 to 2.0, as outlined in 
Figure S19. However, it should be noted that the resulting new optimal residence times 
are slightly lower than those of the initial situation, even after recalculation.

Two examples of inaccurate dosage of starting materials were evaluated: halved flow rate 
of benzaldehyde 1, and halved flow rate of benzylamine 2. In both cases, the Simplex 
autonomously discovers the new optimum stoichiometric ratio, always corresponding to 
the expected values.
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E. Comparison of modified Simplex algorithm and Design of Experiments

For both optimisation strategies, Table S6 provides an overview of the overall 
measurement times needed to complete an optimisation cycle. Moreover, different 
optimisation goals and multidimensional optimisation of two or three variable parameters 
are compared. 

It should be noted that the actual measurement times strongly depend on the respective 
residence time, and thus on the reaction kinetics. Hence, the relation between the number 
of experiments and overall measurement time is not linear, but rather depends on whether 
experimental points with high or low residence time are investigated. The next 
measurement did not commence until steady-state conditions and a constant reaction 
temperature had been re-established. Re-establishing a constant reaction temperature is 
especially crucial when it comes to optimisation with three variable parameters (including 
temperature as variable parameter). In comparison, the optimisation workflow itself 
proceeded quite fast (<1 s), since it only consists of permanent communication between 
MATLAB, HiTec Zang, and OPUS in the background.

Table S6. Overall measurement times and number of experiments required to find optimal 
reaction conditions for Simplex and DoE optimisation, with different optimisation goals, and 

two or three variable parameters.

Optimisation strategy
Overall measurement 

time [h]
Number of 

experiments

Simplex optimisation

objective function: product concentration 
two variable parameters

4.3 25

objective function: product concentration 
three variable parameters

5.5 20

objective function: costs per kg of product 
two variable parameters

1.5 22

objective function: costs per kg of product 
three variable parameters

2.9 22

DoE optimisation

objective function: product concentration 
two variable parameters

2.8 18

objective function: product concentration 
three variable parameters

4.7 22

objective function: costs per kg of product 
two variable parameters

2.0 18

objective function: costs per kg of product 
three variable parameters

3.3 22



26

In case of product concentration as objective function, DoE optimisation had always been 
completed faster than the Simplex optimisation (even though Simplex optimisation 
needed fewer experiments in case of three variable parameters). This was due to the fact 
that the Simplex algorithm soon converged to high residence times, as the value of the 
objective function increased drastically with increasing residence time. By contrast, the 
experimental plans of the DoE optimisation were always evenly distributed over the entire 
experimental space. Therefore, experimental plans included both, low and high residence 
times. Thus, DoE also involved testing lower residence times to calculate surface 
response models, resulting in shorter measurement times.

However, when searching for lowest possible costs per kg of product, Simplex 
optimisation succeeded faster than the DoE optimisation (even though Simplex 
optimisation needed more experiments in case of two variable parameters). The Simplex 
algorithm soon converged towards low residence times, whereas DoE optimisation was 
now been slowed down by its experimental plans that had been evenly distributed 
throughout the entire experimental space. Thus, it also involved testing higher residence 
times to derive the surface response models.

Overall, it can be stated that a three parameter optimisation always required longer 
measurement times compared to an optimisation with two variable parameters. This 
difference was caused by an additional waiting period, during which the reaction 
temperature was resettling on a constant (particular) level once again. Nevertheless, all 
optimisation problems were successfully solved within one working day.
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F. Parallel determination of kinetic data

In Figure S20, the experimental data points that were investigated during the classical 
approach for kinetic modeling under nonsteady-state conditions are compared with the 
experimental data gained during Simplex optimisation with two variable parameters 
(stoichiometric ratio and residence time). Experimental data from Simplex optimisation 
was used for a parallel determination of kinetic data.

Figure S20. Comparison of experimental data points investigated during classical kinetic 
modeling approach and during Simplex optimisation with parallel determination of kinetic data. 

Reaction temperature is held constant at 25 °C, stoichiometric ratio and residence time are 
varied.

In Figure S21, the experimental data points that were investigated during the classical 
approach for kinetic modeling under nonsteady-state conditions are compared with the 
experimental data gained during DoE optimisation with two variable parameters 
(stoichiometric ratio and residence time). Experimental data from DoE optimisation was 
used for a parallel determination of kinetic data.
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Figure S21. Comparison of experimental data points investigated during classical kinetic 
modeling approach and during DoE optimisation with parallel determination of kinetic data. 
Reaction temperature is held constant at 25 °C, stoichiometric ratio and residence time are 

varied.
Legend:    First DoE run.    Second DoE run.

In case of the classical approach, concentration profiles had been acquired as function of 
residence time. This had been done at a constant reaction temperature and a defined 
stoichiometric ratio of starting materials (benzaldehyde 1 : benzylamine 2 amounting to 
1.0). Subsequently, the reaction’s temperature dependence had been examined. Kinetic 
data had been determined through fitting the experimental results to a kinetic model. This 
model described the reaction rate as a function of the concentration of starting materials. 
Therefore, the least squares method had been used to perform a curve fit based on a 
calculation of rate coefficient kref at a defined reference temperature Tref amounting to 25 
°C and activation energy EA.

During multidimensional Simplex optimisation, all involved variable parameters were 
iterated frequently, resulting in diverse parameter combinations. By the same token, 
especially the stoichiometric ratio was varied frequently (during Simplex optimisation), 
since it constituted a variable parameter with high impact on product concentration. In 
case of maximum product concentration as optimisation goal, short residence times were 
investigated only to a lesser extent compared to high residence times. This was also true 
for optimisation with three variable parameters, where lower reaction temperatures have 
hardly been investigated. Hence, the simplex algorithm quickly converged to parameter 
combinations that ensured high product concentration. In the final stages of Simplex 
optimisation, only slight changes in the parameter values arose. Instead, the process was 
driven towards long residence times, high reaction temperatures, and a stoichiometric 
ratio near 1.0. 
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Nomenclature

1 [-] benzaldehyde

2 [-] benzylamine

3 [-] n-benzylidenebenzylamine

cj [mol L−1] concentration of compound j

CR [-] contraction point with change in movement direction

CW [-] contraction point without change in movement 
directionE [-] expansion point

EA,i [kJ mol−1] activation energy of reaction i

ki
[L mol−1 s−1]
[s−1]

reaction rate coefficient of reaction i

n [-] dimension of optimisation problem

R [-] reflection point

Rj [mol L−1 s−1] reaction rate of compound j

Rideal [J mol−1 K−1] ideal gas constant

t [s] time

T [K] temperature

Tref [K] reference temperature
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