Bifunctional carbon Ni/NiO nanofiber catalyst based on 5sulfosalicylic acid for conversion of C5/C6 carbohydrates into ethyl levulinate

Haixin Guo,^{a,*} Yuya Abe,^a Xinhua Qi,^b and Richard Lee Smith Jr ^{a,c,*}

^aGraduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba, Sendai 980-8579, Japan.

^bCollege of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China.

^cResearch Center of Supercritical Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-

11, Aoba-ku, Sendai 980-8579, Japan

Section 1. Experimental

Figure S1. XPS spectra, O 1s region of as-prepared bifunctional carbon Ni/NiO nanofiber catalyst.

Catalyst characterization (SEM images)

Figure S2. SEM images of as-prepared bifunctional carbon Ni/NiO nanofiber catalyst and corresponding EDX maps.

Figure S3. TG-DTA curves of as-prepared bifunctional carbon Ni/NiO nanofiber catalyst (under N_2 with 10 °C/min).

Figure S4. ATR-IR spectra of (black line) furfuryl alcohol and (red line) furfuryl alcohol-Ni/NiO nanofiber mixture system.

Samples	Functional groups	Total acidity (mmol/g)	Q (mmol/g)
Amberlyst-15	-SO ₃ H, -OH	4.7	-
S-FC	-SO ₃ H, -OH, -COOH	3.54	0.1
Ni/NiO nanofiber	-SO ₃ H, -OH, -COOH, NH ₂	5.5	2.5

Table S1. Adsorption capacity (Q) of sulfonated carbon without amino groups (S-FC) and Ni/NiO nanofiber catalyst for furfuryl alcohol at 20 °C.

Conditions: 0.1 g FAL, 5 mL ethanol, 0.05 g adsorbent

Analysis

A gas chromatograph (GC-Shimadzu-14C, Capillary column, Rtx-Wax 30 m \times 0.53 mm \times 1 µm) and a gas chromatograph/mass spectrometer (GC/MS, Agilent 78900 GC/5795 MSD) and a mass selective detector and flame ionization detector (FID) were used to analyze samples for substrate conversion and products yields. The carrier gas was N₂ with a flowrate of 1.0 mL/min and the temperature program was (60 to 230) °C (heating rate, 10 °C/min). Products of 5-HMF yields, 5-EMF yields, and fructose conversion were analyzed with high-performance liquid chromatography (HPLC) equipped with a refractive index detector using HPLC-RI SH 1011 column with an oven temperature of 60 °C. Mobile phase used in HPLC analyses was sulfuric acid aqueous solution (0.5 mM) at a flow rate of 1 mL/min. All results were replicated at least two times and the reproducibility of product yields was within 3 % standard deviation.

Figure S5. Analysis with ¹H NMR of formed byproducts during the course of one-pot conversion of furfuryl alcohol (FAL) with Ni/NiO bifunctional nanofiber catalyst. Reaction conditions: 0.1 g furfuryl alcohol, 0.05 g catalyst, reaction temperature, 150 °C, reaction time, 4 h.

Figure S6. GC-MS spectrum of the intermediate (a) and products formed (b) during the one-pot conversion of furfuryl alcohol (FAL) with Ni/NiO bifunctional nanofiber catalyst 140 °C (c) one-pot conversion of furfural with Ni/NiO bifunctional nanofiber

catalyst at 150 °C. Products: ethyl levulinate (EL), 2-(ethoxymethyl)furan (2-EMF), 4,5,5-triethoxypentan-2-one (TEP) and 2,5,5-triethoxypentan-2-one (TPO).

Table S2. Carbon balance calculation for the synthesis of ethyl levulinate from furfural alcohol at different reaction temperatures after 6 h reaction time. (2-(ethoxymethyl)furan (2-EMF), 4,5,5-triethoxypentan-2-one (TEP) and 2,5,5-triethoxpentan-2-one (TPO)).

Т	Conv	Percentage of FAL used for product (%)				
(°C)	(%)	EL	2-EMF	TPO	TEP	Total
130	-	-	-	-	-	-
140	46.9	67.4	13.6	4.5	1.1	86.6
150	74	70.4	15.2	6.8	1.7	94.1
160	100	52.8	4.3	7.1	3.3	67.5

Reaction conditions are described in Figure 5.

Entry	T (°C)	Time (h)	Conv. (%)	EL select. (%)
1	130	10	8	-
2	140	4	35.1	41.9
3		6	46.9	67.4
4		8	68.9	54.7
5		10	73.8	40.4
6	150	2	34.2	63.5
7		4	41.5	70.4
8		8	87	54.1
9 ^a		6	100	44
10	160	2	54	45
11		4	72.1	52.3
12		5	88.3	62.6
13		6	100	52.8

Table S3. Effect of reaction temperature and time on (a) furfural alcohol conversion and (b) ethyl levulinate selectivity for furfural alcohol etherification-hydrolysis catalyzed by as-prepared nanofiber catalyst in ethanol.

Reaction conditions: 0.1 g furfural alcohol, 0.05 g catalyst, 3 mL ethanol. ^{*a*}using 0.05 g Amberlyst-15

instead of as-prepared catalyst.

Section 2. Reuse and recycle of catalyst

Figure S7. Thermal and spectral analyses of the spent Ni/NiO bifunctional nanofiber catalyst: (a) TG-DTA curve and (b) FT-IR spectra.