Supplementary material

Dual-enzyme and NADPH co-embedded organic-inorganic hybrid nanoflowers prepared using biomimetic mineralization for the asymmetric synthesis of (R)-(-)pantolactone

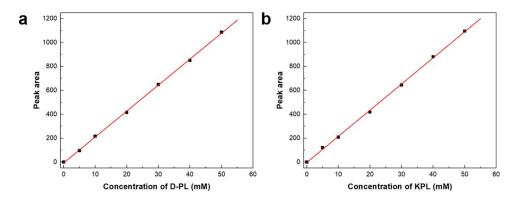
Author names and affiliations

Pengfei Cheng,^a Manman Tang,^b Zhiji Chen,^b Wen Liu^b, Xinpeng Jiang,^a Xiaolin Pei,^{*,a,b} Weike Su^{*,a}

^a Collaborative Innovation Center of Yangtze River Delta Region Green
Pharmaceuticals, College of pharmacy, Zhejiang University of Technology, Hangzhou,
310032, PR China

^b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China

*Corresponding author at: Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.


****Corresponding author at:** College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China.

E-mail addresses: suweike@zjut.edu.cn (W. Su); pxl@hznu.edu.cn (X. Pei)

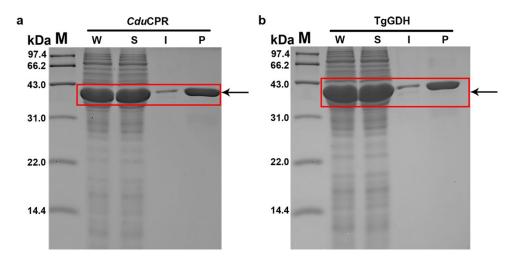
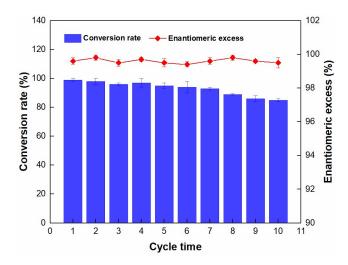
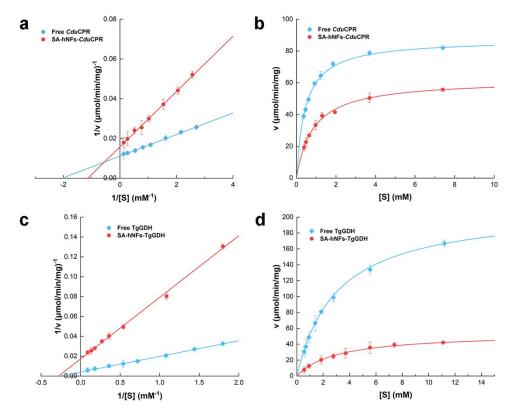

Plasmid	Relevant genotype or characteristic	Reference or source
pET28a (+)	P _{T7lac} , Ori (ColE1), Kan ^R	Novagen ^a
pET21a (+)	P _{T7lac} , Ori (ColE1), Amp ^R	Novagen
	Expression vector, pET28a(+) derivative,	
pET28a-	Kan ^R , containing the conjugated	Cheng et al., 2019
CduCPR	polyketone reductase gene from C.	
	dubliniensis CD36 (CduCPR)	
	Expression vector, pET21a(+) derivative,	
pETgGDH	Amp ^R , containing the glucose	Aiba et al., 2015
	dehydrogenase gene from Themoproteus	
	sp. GDH-1 (TgGDH)	

Table S1 Plasmids used in this study


^a Merck KGaA, Darmstadt, Germany.


Fig. S1. The standard curves of (R)-PL (a) and KPL (b) by GC (external standard method).

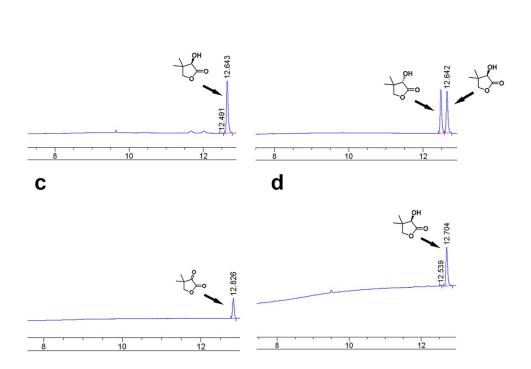
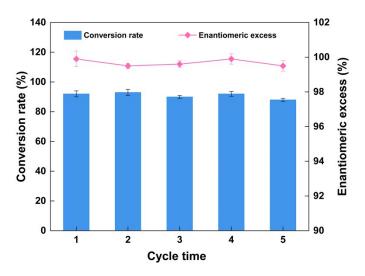

Fig. S2 The expression of *Cdu*CPR and TgGDH in *E. coli* BL21 (DE3) analyzed by SDS-PAGE. M: protein markers; W: whole cell proteins; S: soluble part; I: insoluble part of whole cell protein and P: purified protein.

Fig. S3 Reusability of SA-NADP⁺ in the dual-enzymatic synthesis of (R)-pantolactone.


Fig. S4 Lineweaver-Burk Plots and substrate saturation plots for ketopantoyl lactone of *Cdu*CPR/TgGDH@Ca₃(PO₄)₂ hybrid composites with or without the SA coated.

b

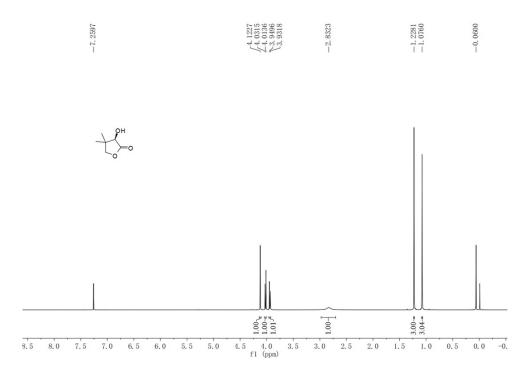

а

Fig. S5 GC analysis of biotransformation reaction. (a) (*R*)-PL reference standard; (b) (*RS*)-PL reference standard; (c) Ketopantoyl lactone reference standard; (d) The product with the SA-coated *Cdu*CPR/TgGDH@Ca₃(PO₄)₂.

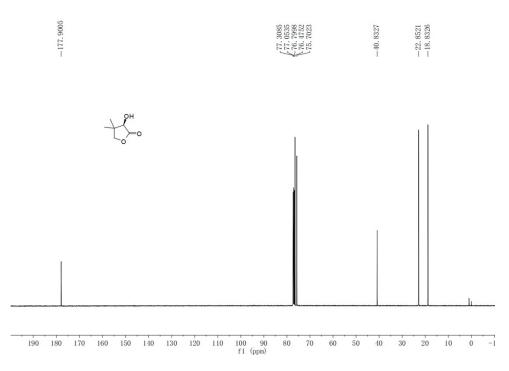


Fig. S6 Catalytic efficiency of mixed two different particles containing *Cdu*CPR and *Tg*GDH respectively.

The catalytic efficiency of mixed two different particles was performed under the optimum reaction condition. A total of 4 mL 100 mM potassium phosphate buffer (pH 7.0) contained 75 mM glucose, two different particles (containing 5 mg/mL of TgGDH, 1 mg/mL of CduCPR) and 2.5 mg/mL SA-NADP⁺. The substrate stock solution was prepared by dissolving 32 mg KPL in 1 mL acetic acid/sodium acetate (50 mM, pH 2.6). The stock solution of KPL was pumped into the reactor at 25 µL/min. The reaction pH was maintained at pH 7.0 by titration with 2 M Na₂CO₃. After the feeding was finished, the reaction was stirred at 30 °C for another 20 min. The concentration of (*R*)-PL and KPL in the reaction supernatant was determined by gas chromatography.

Fig. S7 ¹H NMR spectrum of the purified product (*R*)-PL catalyzed using SA- NADP⁺ *Cdu*CPR/TgGDH@Ca₃(PO₄)₂. ¹H NMR (500 MHz, CDCl₃) δ 4.12 (s, 1H), 4.02 (d, *J* = 8.9 Hz, 1H), 3.94 (d, *J* = 8.9 Hz, 1H), 2.83 (s, 1H), 1.23 (s, 3H), 1.08 (s, 3H).

Fig. S8¹³C NMR spectrum of the purified product (*R*)-PL catalyzed using SA- NADP⁺ *Cdu*CPR/TgGDH@Ca₃(PO₄)₂. ¹³C NMR (125 MHz, CDCl₃) δ 177.90 (s), 76.48 (s), 75.70 (s), 40.83 (s), 22.85 (s), 18.83 (s).