Ammonia Dynamic Modelling over Cu-SSZ-13 Catalyst for NOx Emission Control of Diesel Vehicles

Biao Liu^{†,1}, Dongwei Yao^{†,1*}, Feng Wu[†], Xiaohan Hu[†], Yuxi Li[†], Xinlei Wang[‡]

⁺ College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

* Department of Agricultural and Biological Engineering, University of Illinois at

Urbana-Champaign, Urbana 61801, USA

*Corresponding Author E-mail: dwyao@zju.edu.cn

¹ These authors are co-first authors of the article

1. The activation energy of ammonia desorption used in the reference

Reference	activation energy of S1 and S2/(kJ/mol)
L. Olsson, K. Wijayanti, K. Leistner, A. Kumar, S.Y. Joshi, K. Kamasamudram, N.W. Currier, A. Yezerets, A multi-site kinetic model for NH 3-SCR over Cu/SSZ-13, Applied Catalysis B: Environmental, 174 (2015) 212-224.	149.0/137.8
SR. Daya, S.Y. Joshi, J. Luo, R.K. Dadi, N.W. Currier, A. Yezerets, On kinetic modeling of change in active sites upon hydrothermal aging of Cu-SSZ-13, Applied Catalysis B: Environmental, 263 (2020) 118368	103/134
Y. Jangjou, C.S. Sampara, Y. Gu, D. Wang, A. Kumar, J. Li, W.S. Epling, Mechanism-based kinetic modeling of Cu-SSZ-13 sulfation and desulfation for NH3-SCR applications, Reaction Chemistry & Engineering, 4 (2019) 1038-1049.	82/82
X. Song, G. Parker, J.H. Johnson, J. Naber, J. Pihl, A Modeling Study of SCR Reaction Kinetics from Reactor Experiments, SAE International, 2013.	52.2/71.6
J. Gong, K. Narayanaswamy, C.J. Rutland, Heterogeneous Ammonia Storage Model for NH3–SCR Modeling, Ind Eng Chem Res, 55 (2016) 5874-5884.	43/88

Table S1 The activation energy of ammonia desorption used in the reference

2. Identification results of modified dual-site model

Figure S1 Experiment and kinetic modeling with modified dual-site model for NH₃-TPD over Cu-SSZ-13 catalysts at different temperatures (Reaction conditions: NH₃ = 350 ppm, GHSV = $60000h^{-1}$, flushing duration = 30 min, heating rate = 10 °C /min)

3. Identification results of dual-site model

Figure S2 Experiment and kinetic modeling with dual-site model for NH₃-TPD over Cu-SSZ-13 catalysts at different temperatures (Reaction conditions: NH₃ = 350 ppm, GHSV = $60000h^{-1}$, flushing duration = 30 min, heating rate = $10 \text{ }^{\circ}C \text{ /min}$)

4. Identification results of multi-site model

Figure S3 Experiment and kinetic modeling with multi-site model for NH₃-TPD over Cu-SSZ-13 catalysts at different temperatures (Reaction conditions: NH₃ = 350 ppm, GHSV = $60000h^{-1}$, flushing duration = 30 min, heating rate = $10 \text{ }^{\circ}\text{C}$ /min)

5. Ammonia storage in Figure 6 and Figure 7

Figure S4 Ammonia storage in Figure 6 and Figure 7

6. Validation of dual-site model

6.1 validation with different adsorption NH3 concentration

Figure S5 Validation of the dual-site model with different NH_3 concentration (Reaction conditions: NH_3 = 500 ppm (A) and 200 ppm (B), $GHSV = 60000h^{-1}$, flushing duration = 30 min, heating rate = 10 °C /min)

6.2 Validation with different flushing duration

Figure S6 Validation of the dual-site model with different flushing duration (Reaction conditions: $NH_3 = 350 \text{ ppm}$, $GHSV = 60000h^{-1}$, flushing duration = 0 min(A), 10 min(B), 20 min(C), heating rate = 10 °C /min)

Figure S7 Validation of the dual-site model with different heating rate (Reaction conditions: $NH_3 = 350$ ppm, GHSV = 60000h⁻¹, flushing duration = 30 min, heating rate = 5 °C /min(A), 15 °C /min(B), 20 °C /min(C))

7. Validation of multi-site model

7.1 Validation with different NH₃ adsorption concentration

Figure S8 Validation of the multi-site model with different NH_3 concentration (Reaction conditions: NH_3 = 500 ppm (A) and 200 ppm (B), $GHSV = 60000h^{-1}$, flushing duration = 30 min, heating rate = 10 °C /min)

7.2 Validation with different flushing duration

Figure S9 Validation of the dual-site model with different flushing duration (Reaction conditions: $NH_3 = 350 \text{ ppm}$, $GHSV = 60000h^{-1}$, flushing duration = 0 min(A), 10 min(B), 20 min(C), heating rate = 10 °C /min)

Figure S10 Validation of the modified dual-site model with different heating rate (Reaction conditions: $NH_3 = 350 \text{ ppm}$, $GHSV = 60000h^{-1}$, flushing duration = 30 min, heating rate = 5 °C /min(A), 15 °C /min(B), 20 °C /min(C))