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Detailed description of formula derivation in three-layer model.

Below are two continuity equations, Eq. S1 and S2, for the solid particles and liquid 

phase, respectively.

(S1)𝑈ℎ𝐶ℎ𝐴ℎ + 𝑈mb𝐶mb𝐴mb = 𝑈𝑠𝐶𝑠𝐴

(S2)𝑈ℎ(1 ‒ 𝐶ℎ)𝐴ℎ + 𝑈mb(1 ‒ 𝐶mb)𝐴mb = 𝑈𝑠(1 ‒ 𝐶𝑠)𝐴

Where U is the axial velocity, C is the volumetric concentration of the solid particles, and 

A is the pipe cross-sectional area; the subscripts h, mb, and s denote the H layer, MB 

layer, and the slurry, respectively; Us is the mean velocity of the slurry; Cs is the slurry 

input concentration; Ah and Amb are the cross-sectional areas occupied by the H and MB 

layer, respectively.

1) Force balance equation

For the H layer, the heterogeneous mixture is considered as a pseudoliquid with effective 

properties, under the shear stresses acting on the contact surface of the pipe wall with the 

H layer and the interface between the H and MB layers. The equation of the force balance 

is:

(S3)
𝐴ℎ

𝑑𝑃
𝑑𝑥

=‒ 𝜏ℎ𝑆ℎ ‒ 𝜏hmb𝑆hmb

Where dP/dx is the pressure drop, Shmb is the interface between the H and MB layers; τh 

and τhmb are the upper layer shear stress and the interfacial shear stress acting on the 

perimeters Sh and Shmb, respectively.

The shear stress at the pipe circumference is:

(S4)
𝜏ℎ =

1
2

𝜌ℎ𝑈ℎ
2𝑓ℎ

And the shear stress at the interface between the H and MB layers is:

(S5)
𝜏hmb =

1
2

𝜌ℎ(𝑈ℎ ‒ 𝑈mb)2𝑓hmb

Where ρh is the effective density of the H layer, evaluated as 

(S6)𝜌ℎ = 𝜌𝑠𝐶ℎ + 𝜌𝐿(1 ‒ 𝐶ℎ)

Where ρS and ρL are the densities of the solid particles and the liquid, respectively.

The friction coefficient (fh) at the pipe wall is found from



                                                                                

(S7)𝑓ℎ = 𝛼ℎ𝑅𝑒ℎ
‒ 𝛽ℎ

Where αh = 0.046, βh = 0.02 for turbulent flow and αh = 16, βh = 1 for laminar flow. The 

Reynolds number Reh is based on the hydraulic diameter Dh, shown as the below Eq. S8 

and Eq. S9.

(S8)
𝑅𝑒ℎ =

𝜌ℎ𝑈ℎ𝐷ℎ

𝜇ℎ

(S9)
𝐷ℎ =

4𝐴ℎ

𝑆ℎ + 𝑆mb

The friction coefficient at the interface (fnmb) is found from

(S10)

1
2𝑓hmb

=‒ 0.86ln ( 

𝑑𝑝

𝐷
3.7

+
2.51

𝑅𝑒ℎ 2𝑓hmb)
where D and dp are the diameters of the pipe and the particles flowing in the pipe. Here, 

the roughness of the interface is assumed of the order of a particle diameter.

For the MB layer, the positive force is the shear stress at the interface with the H layer, 

and the negative force is the dry friction force acting at the interface with the pipe wall 

and SB layer. The equation of the force balance is:

(S11)
𝐴mb

𝑑𝑃
𝑑𝑥

=‒ 𝐹mbsb ‒ 𝜏mbsb𝑆mbsb ‒ 𝐹mb ‒ 𝜏mb𝑆mb + 𝜏hmb𝑆hmb

Where Fmbsb is the dry friction force acting at the interface between the MB and SB layers; 

τmbsb is the hydrodynamic shear stress acting on the interface between the MB and SB 

layers, Smbsb; Fmb is the dry friction force acting at the contact surface of the MB layer 

with the pipe wall, Smb, and τmb is the hydrodynamic shear acting on that surface.

τmb and τmbsb are expressed by

(S12)
𝜏mb =

1
2

𝜌𝐿𝑈mb
2𝑓mb

(S13)
𝜏mbsb =

1
2

𝜌𝐿𝑈mb
2𝑓mbsb

The friction coefficient at the pipe wall, fmb, is evaluated in a similar way to fh.



                                                                                

(S14)𝑓mb = 𝛼mb𝑅𝑒mb

‒ 𝛽mb

where αmb = 0.046, βmb = 0.02 for turbulent flow and αmb = 16, βmb = 1 for laminar flow. 

The Reynolds number Remb is based on the hydraulic diameter Dmb, shown as the below 

Eq. S15 and Eq. S16.

(S15)
𝑅𝑒mb =

𝜌𝐿𝑈mb𝐷mb

𝜇ℎ

(S16)
𝐷mb =

4𝐴mb

𝑆mb + 𝑆mbsb

The friction coefficient at the interface between the MB and SB layers, fmbsb, is evaluated 

similarly to fhmb.

(S17)

1
2𝑓mbsb

=‒ 0.86ln ( 

𝑑𝑝

𝐷
3.7

+
2.51

𝑅𝑒mb
2𝑓mbsb)

Here, Fmb, the dry friction force at the pipe wall contributed by the solid particles in the 

MB layer, is composed of the effect of the submerged weight of the particles, FWmb, and 

the transmission of stress from the interface, Fɸmb:

(S18)𝐹mb = 𝐹Wmb + 𝐹𝜙mb

FWmb and Fɸmb are calculated as the below equations. 

(S19)
𝐹Wmb = 2𝜂

𝜃mb + 𝜃sb

∫
𝜃sb

(𝜌𝑠 ‒ 𝜌𝐿)𝑔𝐶mb(𝐷
2)2{[2(𝑦sb ‒ 𝑦mb)

𝐷
‒ 1] �� ‒ sin 𝛾}𝑑𝛾

(S20)
𝐹𝜙mb = 𝜂

𝜏hmb𝑆mb

tan (𝜙)

Where η is the dry dynamic friction coefficient, g is the gravitational acceleration, D is 

the pipe diameter, ymb is the height of the MB layer, ysb is the height of the SB layer and 

θmb and θsb are the central angles associated with them, respectively. The shear stress at 

the interface Shmb is associated with a normal stress, τN = τhmb/tan(ɸ), where tan(ɸ) is the 

tangent of the angle of internal friction.

Fmbsb, the contribution of the solid particle to the friction force acting on the interface 

Smbsb, is found in a similar manner,



                                                                                

(S21)𝐹mbsb = 𝐹Wmbsb + 𝐹𝜙mbsb

Where FWmbsb and Fɸmbsb are calculated as:

(S22)𝐹Wmbsb = 𝜂(𝜌𝑠 ‒ 𝜌𝐿)𝑔𝐶mb𝑦mb𝑆mbsb

(S23)
𝐹𝜙mbsb = 𝜂

𝜏hmb𝑆mbsb

tan ( 𝜙)

For the SB layer, since it does not move, the sum of shear and frictional forces from the 

MB layer is less than the frictional force with the pipe wall. The equation of force balance 

is shown as follows.

(S24)
𝐴sb

𝑑𝑃
𝑑𝑥

+ 𝐹mbsb + 𝜏mbsb𝑆mbsb ≤ 𝐹sb

Where Asb is the cross-sectional area of the SB layer, Fsb is the dry friction force acting 

on the periphery of the SB layer, Ssb. Fsb is evaluated in a similar way to Fmb:

(S25)𝐹𝑠𝑏 = 𝐹𝑊𝑎𝑏 + 𝐹𝜙𝑠𝑏

FWsb and Fɸsb are calculated as:

(S26)

𝐹Wsb = 2𝜂𝑠

𝜃sb

∫
‒

𝜋
2

(𝜌𝑠 ‒ 𝜌𝐿)𝑔𝐶sb(𝐷
2)2{[2𝑦sb

𝐷
‒ 1] �� ‒ sin 𝛾}𝑑𝛾

(S27)
𝐹𝜙sb = 𝜂𝑠

𝜏hmb𝑆sb

tan ( 𝜙)

Where ηs is the dry static friction coefficient and Csb is the concentration of the SB layer.

2) Diffusion

The dispersion of the solid particles in the H layer is assumed to be evaluated by the 

below diffusion equation.

(S28)
𝜀

𝑑2𝐶

𝑑𝑦2
+ 𝑤

𝑑𝐶
𝑑𝑦

= 0

where y is the vertical coordinate, perpendicular to the pipe axis, ɛ is the diffusion 

coefficient, and w is the terminal settling velocity of the particles. Lateral variations of 

the concentration are neglected, and the concentration distribution is assumed one-

dimensional. Taking the concentration of the MB layer, Cmb, as the boundary condition, 

the concentration profile in the H layer is obtained:



                                                                                

(S29)
𝐶(𝑦) = 𝐶mbexp ( ‒

𝑤[𝑦 ‒ (𝑦mb +  𝑦sb)]
𝜀 )

Where w and ɛ are calculated in the same way as the previous report.1 Upon integration 

over the cross section of the upper layer, the equation for the mean concentration in that 

layer, Ch, is obtained:

(S30)

𝐶ℎ

𝐶mb
=

2(𝐷
2)2

𝐴ℎ

𝜋/2

∫
𝜃mb + 𝜃sb

𝑒𝑥𝑝{ ‒
𝑤𝐷
2𝜀 [sin 𝛾 ‒ sin ( 𝜃mb + 𝜃sb)]}cos2𝛾𝑑𝛾

All the geometrical properties which appear in the above equations can be expressed in 

terms of ymb and ysb for a given pipe diameter, D:

(S31)
𝐴ℎ = (𝐷

2)2{ �cos ‒ 1 [2(𝑦mb + 𝑦sb)
𝐷

‒ 1] ‒ [2(𝑦mb + 𝑦sb)
𝐷

‒ 1] 1 ‒ [2(𝑦mb + 𝑦sb)
𝐷

‒ 1]2} �
(S32)

𝐴sb = (𝐷
2)2{ �𝜋 ‒ cos ‒ 1 ( 

2𝑦sb

𝐷
‒ 1) + (2𝑦sb

𝐷
‒ 1) 1 ‒ (2𝑦sb

𝐷
‒ 1)2} �

(S33)
𝐴mb =

1
4

𝜋𝐷2 ‒ (𝐴ℎ + 𝐴sb)

(S34)
𝑆ℎ = 𝐷cos ‒ 1 [2(𝑦mb + 𝑦sb)

𝐷
‒ 1]

(S35)
𝑆sb = 𝐷[𝜋 ‒ cos ‒ 1 ( 

2𝑦sb

𝐷
‒ 1)]

(S36)𝑆mb = 𝜋𝐷 ‒ (𝑆ℎ + 𝑆sb)

(S37)
𝑆hmb = 𝐷 1 ‒ [2(𝑦mb + 𝑦sb)

𝐷
‒ 1]2

(S38)
𝑆mbsb = 𝐷 1 ‒ (2𝑦sb

𝐷
‒ 1)2

(S39)
𝜃mb = cos ‒ 1 ( 

2𝑦sb

𝐷
‒ 1) ‒ cos ‒ 1 [2(𝑦mb + 𝑦sb)

𝐷
‒ 1]

(S40)
𝜃sb =

𝜋
2

‒ cos ‒ 1 ( 
2𝑦sb

𝐷
‒ 1)

3) Flow pattern map



                                                                                

Here, the purpose to apply the three-layer model is to search for the conditions under 

which the slurry can be conveyed without depositing in the pipe. Therefore, in this study, 

the formation of the SB layer was not considered to simplify the calculation method, and 

the calculation was limited to the condition that the MB layer was the minimum (ymb = 

dp, ysb = 0).

After substituting the initial condition (ymb = dp, ysb = 0) to Eq. (S30-S40) numerically, 

Eq. (S1-S2) can be derived, and the below equation can be obtained. 

(S41)
𝑈ℎ = 𝑈𝑠

𝐴
𝐴mb

𝐶𝑠 ‒ 𝐶mb

𝐶ℎ ‒ 𝐶mb

From Eq. (S3-S41), the maximum flow velocity (Uh) at which the MB layer is formed at 

a certain pulp density (Cs) can be obtained. The boundary between the H and MB layers 

can be changed by changing Cs. A flow pattern map, which expresses the relationship 

between Cs and Uh, was constructed and used to predict the flow state of the slurry and 

set the conditions under which accumulation or deposition does not occur.



                                                                                

Fig. S1 The size distribution of LiCoO2 particles.
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