Liquid-phase synthesis of butyl *tert*-butyl ether catalysed by ionexchange resins: kinetic modelling through in-depth model discrimination

Jordi Hug Badia, a Carles Fité, *a Roger Bringué, a Eliana Ramírez, a Montserrat Iborra a

Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain

*Corresponding author. Tel.: +34 93 402 1304; Fax: +34 93 402 1291; E-mail address: fite@ub.edu

Electronic Supplementary Information (ESI)

A. Calculation of experimental reaction rates

In the present work, two different reactor setups have been used: a fixed-bed reactor and a batch reactor. In the fixed-bed reactor, one experimental run provides only one measured reaction rate, calculated from the composition change between the reactor inlet and at outlet at the steady state. Since the reactor operated under differential regime, i.e., at low conversion, the reaction rate can be assumed to be constant along the reactor. The experimental isobutene consumption rate was calculated as follows:

$$-r_{\rm IB} = \frac{F_{\rm IB}^{\rm o} \left(X_{\rm IB,outlet} - X_{\rm IB,inlet}\right)}{W_{\rm cat}}$$
(S1)

where F_{IB}^{0} is the isobutene molar flow rate at null conversion, $X_{IB,outlet}$ is the isobutene conversion at the reactor outlet, and $X_{IB,inlet}$ is the inlet isobutene conversion, and W_{cat} is the mass of dry catalyst in the reactor bed. In particular, the reactor inlet stream was only composed of reactants and, therefore, $X_{IB,inlet} = 0$.

In the batch reactor system, the evolution of the reaction medium composition was obtained from samples taken at different times. For each experimental run, the progress of the isobutene molar content was used to fit an empirical function that allowed calculating its slope at the sampled times, which is related with the experimental formation rate of compound j, r_j , as follows:

$$r_j = \frac{1}{W_{\text{cat}}} \left(\frac{dn_j}{dt}\right)$$
(S3)

where W_{cat} is the mass of dry catalyst, n_j is the number of moles of compound j and t is the reaction time.

As an illustrative example, Figure S1 shows the result of two different experimental runs carried out in the batch reactor system and how the experimental reaction rate was calculated at instants where samples were taken.

Fig. S1 Experimental mole evolution obtained in the batch reactor system under two different conditions: (a) T = 323.4 K, $R^{\circ}_{\text{BuOH/JB}} = 1.0$; (b) T = 343.5 K, $R^{\circ}_{\text{BuOH/JB}} = 1.2$. Dashed lines correspond to fitted empirical equation. Red arrows represent the derivative with respect to time, used to calculate experimental reaction rates at those instants.

B. Experimental conditions and calculated reaction rates

Evper	τ	+	Weat	Mole fraction										
setup	(К)	(min)	(g)	x _{IB}	X BuOH	X BTBE	X TBA	X _{TMP-1}	X _{TMP-2}	X i-butane	X trans-2-	X cis-2-	[mol/g h]	
Dlug	222.15		0.0810	0.202	0 125	0	0	0	0	0 222	butene	butene	1 1 2 0	
flow	333.15		0.0420	0.203	0.135	0	0	0	0	0.332	0.328	0.002	1.125	
reactor	222 15		0.0420	0.193	0.100	0	0	0	0	0.313	0.313	0.002	1.031	
	212 15		0.0421	0.190	0.193	0	0	0	0	0.311	0.303	0.002	0.666	
	212.15		0.1005	0.466	0.312	0	0	0	0	0	0	0	0.000	
	202.15		0.2000	0.520	0.460	0	0	0	0	0	0	0	0.080	
	222.15		0.0440	0.546	0.452	0	0	0	0	0	0	0	1.640	
Datab	323.15	—	0.0217	0.490	0.510	0	0	0	0	0	0	0	1.640	
reactor	323.35		0.7200	0.498	0.502	0 0 1 0	0 001	0	0	0	0	0	1.501	
reactor	272.25	2/		0.466	0.491	0.019	0.001	0	0	0	0	0	0.844	
	272.25	68		0.333	0.387	0.238	0.000	0	0	0	0	0	0.844	
	272.25	00		0.285	0.220	0.489	0.000	0 011	0 002	0	0	0	0.457	
	323.33	133		0.138	0.199	0.047	0.002	0.011	0.002	0	0	0	0.201	
	323.35	163		0.052	0.102	0.752	0.002	0.010	0.002	0	0	0	0.141	
	323.33	223		0.075	0.133	0.750	0.002	0.012	0.002	0	0	0	0.082	
	323.35	223		0.055	0.142	0.782	0.002	0.012	0.002	0	0	0	0.028	
	323.33	294		0.032	0.137	0.754	0.002	0.012	0.002	0	0	0	0.010	
	323.35	362		0.040	0.134	0.801	0.002	0.012	0.003	0	0	0	0.002	
	323.33	302		0.047	0.131	0.804	0.002	0.013	0.003	0	0	0	0.002	
	323.35	427		0.052	0.131	0.800	0.002	0.012	0.003	0	0	0	0.001	
	323.35	466		0.052	0.131	0.800	0.002	0.013	0.003	0	0	0	0.001	
Batch	318.45	0	0.5100	0.092	0.150	0.000	0.002	0.012	0.005	0	0	0	1 261	
reactor	318.45	3	0.0100	0.492	0.503	0 008	0.001	0	0	0	0	0	1 217	
	318.45	33		0.403	0.305	0.000	0.001	0 009	0.002	0	0	0	0.853	
	318.45	63		0.316	0.392	0.268	0.002	0.017	0.004	0	0	0	0.599	
	318.45	93		0.246	0.343	0.379	0.002	0.024	0.005	0	0	0	0.420	
	318.45	125		0.208	0.311	0.445	0.002	0.028	0.006	0	0	0	0.288	
	318.45	156		0.180	0.272	0.509	0.002	0.031	0.007	0	0	0	0.199	
	318.45	187		0.143	0.252	0.564	0.002	0.032	0.007	0	0	0	0.138	
	318.45	217		0.120	0.229	0.608	0.002	0.033	0.007	0	0	0	0.097	
	318.45	248		0.107	0.219	0.631	0.002	0.034	0.007	0	0	0	0.067	
	318.45	287		0.087	0.193	0.684	0.002	0.028	0.006	0	0	0	0.042	
	318.45	313		0.068	0.196	0.692	0.002	0.035	0.008	0	0	0	0.031	
	318.45	345		0.058	0.190	0.707	0.002	0.035	0.008	0	0	0	0.021	
	318.45	450		0.043	0.184	0.727	0.002	0.036	0.008	0	0	0	0.006	
	318.45	480		0.041	0.179	0.734	0.002	0.036	0.008	0	0	0	0.004	
	318.45	547		0.039	0.179	0.736	0.002	0.037	0.008	0	0	0	0.002	
	318.45	580		0.037	0.177	0.740	0.002	0.035	0.008	0	0	0	0.001	
	318.45	621		0.035	0.177	0.742	0.002	0.036	0.008	0	0	0	0.001	
Batch	344.95	0	0.1296	0.492	0.508	0	0	0	0	0	0	0	8.116	
reactor	344.95	3		0.480	0.501	0.017	0.001	0.001	0	0	0	0	7.653	
	344.95	19		0.396	0.463	0.124	0.001	0.013	0.003	0	0	0	5.593	
	344.95	35		0.329	0.420	0.225	0.001	0.020	0.005	0	0	0	4.088	
	344.95	51		0.261	0.381	0.325	0.001	0.025	0.007	0	0	0	2.988	
	344.95	66		0.212	0.356	0.395	0.001	0.028	0.007	0	0	0	2.227	
	344.95	82		0.168	0.341	0.452	0.002	0.029	0.008	0	0	0	1.628	
	344.95	100		0.149	0.313	0.498	0.001	0.031	0.008	0	0	0	1.144	
	344.95	116		0.118	0.298	0.543	0.001	0.031	0.008	0	0	0	0.836	
	344.95	138		0.094	0.286	0.577	0.002	0.033	0.009	0	0	0	0.543	
	344.95	168		0.084	0.281	0.591	0.001	0.033	0.009	0	0	0	0.302	
	344.95	187		0.071	0.288	0.599	0.001	0.033	0.008	0	0	0	0.208	
	344.95	220		0.074	0.274	0.608	0.001	0.033	0.009	0	0	0	0.109	
	344.95	237		0.073	0.273	0.611	0.001	0.033	0.009	0	0	0	0.078	
	344.95	254		0.065	0.268	0.622	0.001	0.035	0.009	0	0	0	0.056	

Table S1. Experimental conditions and calculated experimental rates considered in the fit of the kinetic equations

Expor	τ	+	West	Mole fraction										
setup	(к)	(min)	(g)	v	v	v	v	v	v	v	X _{trans-2-}	X _{cis-2-}	/ BTBE	
		(,	(8)	ΛIB	ABuOH	ABTBE	лтва	ATMP-1	ATMP-2	▲ <i>i</i> -butane	butene	butene	[
Batch	344.35	0	0.0353	0.478	0.522	0	0	0	0	0	0	0	7.434	
reactor	344.35	4		0.476	0.521	0.001	0.002	0	0	0	0	0	7.273	
	344.35	20		0.451	0.517	0.009	0.022	0	0	0	0	0	6.664	
	344.35	37		0.431	0.504	0.033	0.031	0	0	0	0	0	6.073	
	344.35	53		0.409	0.488	0.064	0.038	0	0	0	0	0	5.565	
	344.35	70		0.388	0.472	0.097	0.042	0.001	0	0	0	0	5.071	
	344.55	110		0.371	0.459	0.125	0.045	0.001	0	0	0	0	4.040	
	344.33	127		0.330	0.442	0.193	0.043	0.001	0	0	0	0	3 714	
	344.35	143		0.320	0.422	0.208	0.047	0.001	0	0	0	0	3.403	
	344.35	159		0.291	0.414	0.240	0.053	0.001	0	0	0	0	3.118	
	344.35	176		0.278	0.403	0.262	0.054	0.002	0	0	0	0	2.841	
	344.35	194		0.265	0.393	0.285	0.055	0.002	0	0	0	0	2.575	
	344.35	211		0.261	0.389	0.293	0.054	0.002	0	0	0	0	2.346	
	344.35	229		0.236	0.384	0.318	0.060	0.002	0	0	0	0	2.127	
	344.35	251		0.232	0.375	0.332	0.058	0.003	0.001	0	0	0	1.886	
	344.35	268		0.218	0.372	0.346	0.060	0.003	0.001	0	0	0	1.718	
	344.35	285		0.213	0.369	0.354	0.061	0.003	0.001	0	0	0	1.566	
	344.35	303		0.195	0.368	0.374	0.059	0.003	0.001	0	0	0	1.419	
	344.35	318		0.193	0.361	0.379	0.062	0.004	0.001	0	0	0	1.308	
Batch	355.55	0	0.1238	0.503	0.497	0	0	0	0	0	0	0	17.464	
reactor	355.55	2		0.495	0.491	0.014	0.001	0	0	0	0	0	16.042	
	355.55	33		0.259	0.309	0.422	0.002	0.006	0.002	0	0	0	4.300	
	355.55	51		0.181	0.249	0.558	0.002	0.007	0.002	0	0	0	2.002	
	355.55	6/		0.154	0.224	0.609	0.002	0.008	0.002	0	0	0	1.015	
	355.55	101		0.134	0.213	0.641	0.002	0.008	0.002	0	0	0	0.514	
	355.55	118		0.135	0.209	0.652	0.002	0.008	0.002	0	0	0	0.239	
	355 55	134		0.127	0.207	0.657	0.002	0.009	0.002	0	0	0	0.059	
	355.55	154		0.122	0.207	0.650	0.002	0.009	0.002	0	0	0	0.025	
	355.55	175		0.130	0.212	0.645	0.002	0.009	0.002	0	0	0	0.010	
	355.55	194		0.126	0.210	0.649	0.002	0.010	0.003	0	0	0	0.005	
	355.55	232		0.124	0.213	0.648	0.002	0.010	0.003	0	0	0	0.001	
Batch	334.25	0	0.3530	0.500	0.500	0	0	0	0	0	0	0	3.396	
reactor	334.25	3		0.492	0.496	0.012	0	0	0	0	0	0	3.206	
	334.25	34		0.353	0.372	0.266	0.001	0.007	0.001	0	0	0	1.773	
	334.25	65		0.249	0.298	0.439	0.002	0.010	0.002	0	0	0	0.980	
	334.25	98		0.181	0.235	0.568	0.002	0.011	0.003	0	0	0	0.522	
	334.25	128		0.135	0.194	0.654	0.002	0.012	0.003	0	0	0	0.294	
	334.25	165		0.139	0.143	0.710	0.000	0.007	0.000	0	0	0	0.145	
	334.25	197		0.114	0.133	0.745	0.000	0.007	0.001	0	0	0	0.079	
	334.25	229		0.085	0.148	0.749	0.002	0.014	0.003	0	0	0	0.043	
	334.25	286		0.078	0.143	0.760	0.002	0.014	0.003	0	0	0	0.014	
	334.25	365		0.079	0.139	0.763	0.002	0.014	0.003	0	0	0	0.003	
	334.25	413		0.075	0.140	0.766	0.002	0.014	0.003	0	0	0	0.001	
	334.25	440		0.077	0.140	0.762	0.002	0.014	0.003	0	0	0	0.001	
Batch	334.25	470	0.2060	0.075	0.140	0.702	0.002	0.014	0.003	0	0	0	3 347	
reactor	333.15	1	0.2000	0.500	0.499	0.001	0	0	0	0	0	0	3 306	
leactor	333.15	33		0.404	0.431	0.146	0.001	0.015	0.003	0	0	0	2,215	
	333.15	67		0.303	0.372	0.290	0.001	0.027	0.007	0	0	0	1.447	
	333.15	99		0.244	0.325	0.386	0.001	0.035	0.009	0	0	0	0.970	
	333.15	131		0.198	0.289	0.464	0.001	0.039	0.010	0	0	0	0.650	
	333.15	163		0.164	0.261	0.523	0.001	0.042	0.010	0	0	0	0.435	
	333.15	199		0.142	0.236	0.565	0.001	0.044	0.011	0	0	0	0.278	
	333.15	231		0.120	0.222	0.601	0.001	0.046	0.011	0	0	0	0.186	
	333.15	275		0.105	0.208	0.627	0.001	0.048	0.011	0	0	0	0.107	
	333.15	309		0.091	0.199	0.651	0.002	0.046	0.012	0	0	0	0.070	

Evner	τ	+	Weat			r							
setup	(К)	۲ (min)	(g)	X IB	X _{BuOH}	X BTBE	X TBA	X _{TMP-1}	X _{TMP-2}	X _{i-butane}	X_{trans-2-} butene	X_{cis-2-} butene	(mol/g h]
Batch	344.45	0	0.1200	0.490	0.510	0	0	0	0	0	0	0	7.125
reactor	344.45	2		0.488	0.506	0.006	0	0	0	0	0	0	6.895
	344.45	36		0.341	0.444	0.183	0.002	0.024	0.006	0	0	0	3.946
	344.45	56		0.285	0.391	0.282	0.002	0.032	0.008	0	0	0	2.841
	344.45	91		0.185	0.324	0.441	0.002	0.038	0.010	0	0	0	1.599
	344.45	109		0.177	0.282	0.485	0.002	0.044	0.011	0	0	0	1.190
	344.45	130		0.151	0.260	0.530	0.002	0.046	0.012	0	0	0	0.843
	344.45	146		0.129	0.252	0.559	0.002	0.046	0.012	0	0	0	0.648
	344.45	163		0.115	0.242	0.579	0.002	0.049	0.013	0	0	0	0.490
	344.45	180		0.121	0.232	0.590	0.002	0.043	0.012	0	0	0	0.371
Batch	343.45	0	0.1520	0.455	0.545	0	0	0	0	0	0	0	4.974
reactor	343.45	5		0.399	0.528	0.030	0.042	0	0	0	0	0	4.643
	343.45	42		0.316	0.436	0.243	0.001	0.002	0.001	0	0	0	2.790
	343.45	73		0.234	0.386	0.374	0.002	0.003	0.001	0	0	0	1.821
	343.45	124		0.186	0.337	0.470	0.002	0.004	0.001	0	0	0	0.903
	343.45	156		0.141	0.311	0.541	0.002	0.004	0.001	0	0	0	0.581
	343.45	197		0.122	0.291	0.579	0.002	0.005	0.001	0	0	0	0.331
	343.45	232		0.092	0.281	0.619	0.002	0.005	0.001	0	0	0	0.204
	343.45	273		0.092	0.274	0.626	0.002	0.005	0.001	0	0	0	0.116
	343.45	304		0.084	0.270	0.637	0.002	0.005	0.001	0	0	0	0.076
	343.45	341		0.079	0.267	0.646	0.002	0.005	0.001	0	0	0	0.046
	343.45	372		0.075	0.266	0.651	0.002	0.006	0.001	0	0	0	0.030
	343.45	406		0.073	0.265	0.654	0.002	0.006	0.001	0	0	0	0.019
	343.45	435		0.073	0.265	0.654	0.002	0.006	0.001	0	0	0	0.013

C. Sensitivity analysis of the parameters on the selected kinetic model

The sensitivity analysis of the parameters on the reaction rate predicted by the selected model (Model 49, Equation 18) has been evaluated by means of the Monte Carlo method. It accounts for the effect of the parameter uncertainty on the model output. The applied procedure consists of 3 steps:

- Random generation of a set of parameters: Parameters in the model were assumed to follow a normal distribution with mean equal to its optimal value and standard deviation equal to its standard error, both estimated from the fit. For each parameter, a random value was generated according to its normal distribution. As a result, a set of random parameters was obtained and it was used to calculate the reaction rates at the conditions of each experimental point using Equation 18.
- 2) For each experimental point, the previous step was repeated 1000 times to obtain 1000 calculated reaction rates values. They followed a normal distribution. Its mean corresponds to the reaction rate predicted with Equation 18 using the optimal parameter values. Its standard deviation is a measure of the model sensitivity due to the uncertainty of the parameters.
- 3) Error bars in Figure 4(a) show the model output sensitivity, expressed as the standard deviation of the calculated reaction rates given the standard error of the fitted parameters.

D. Best models ranking obtained with the fixed resin solubility parameter value

	<i>k'</i> (mol/g h)		{driving		{adsorption term}										
IVIODEI #	<i>k</i> ′ ₁	k'_{T}	force} ^a	1 st Ads ^b	K _{1,BuOH}	<i>К</i> _{т,ВиОН}	K _{1,IB}	K _{T,IB}	K _{1,BTBE}	<i>К</i> _{т,втве}	n	(Equation 9)	RSS	Δ_i	Wi
49	0.686	-9570	(a)	a _{BuOH}	-	-	-	-	-1.890	-4991	1	Yes	7.364	0	0.447
151	0.231	-9491	(a)	a _{BuOH}	-	-	-	-	-1.862	-3199	2	Yes	7.541	3	0.089
48	0.709	-9440	(a)	a _{виОН}	-	-	-	-	-1.096	-	1	Yes	7.687	4	0.071
736	0.233	-9487	(c)	a _{BuOH}	-	-	-	-	-1.150	-3711	1	Yes	7.581	4	0.062
156	3.641	-9396	(a)	1	1.350	-	-	-	0.103	-	2	Yes	7.606	4	0.050
273	3.121	-9393	(a)	1	0.370	-	-	-	-0.884	-	3	Yes	7.616	5	0.046
964	0.712	-9429	(c)	1	-	-	-	-	-1.673	-	3	Yes	7.786	5	0.030
847	0.712	-9426	(c)	1	-	-	-	-	-1.248	-	2	Yes	7.787	5	0.030
730	0.714	-9420	(c)	1	-	-	-	-	-0.497	-	1	Yes	7.792	6	0.028
157	3.941	-8540	(a)	1	1.559	597.6	-	-	0.209	-	2	Yes	7.563	6	0.024
741	1.237	-9380	(c)	1	0.075	-	-	-	0.198	-	1	Yes	7.701	6	0.021
858	1.124	-9388	(c)	1	-1.028	-	-	-	-0.873	-	2	Yes	7.711	6	0.020
975	1.093	-9391	(c)	1	-1.549	-	-	-	-1.378	-	3	Yes	7.715	6	0.019
274	3.199	-9004	(a)	1	0.425	277.0	-	-	-0.874	-	3	Yes	7.599	6	0.018
150	0.256	-9354	(a)	a _{виОН}	-	-	-	-	-1.355	-	2	Yes	7.895	7	0.012
859	1.158	-9287	(c)	1	-0.935	270.7	-	-	-0.857	-	2	Yes	7.705	8	0.007
976	1.116	-9314	(c)	1	-1.485	225.7	-	-	-1.371	-	3	Yes	7.711	8	0.007
735	0.260	-9339	(c)	a _{виОН}	-	-	-	-	-0.568	-	1	Yes	7.974	9	0.006
2	1.116	-9694	(a)	1	-	-	-	-	-	-	1	Yes	9.692	33	<10-6

TABLE S2. Optimal parameter values for BTBE kinetic equations with the restriction that $\delta_P = 20.85 \text{ MPa}^{1/2}$, when δ_P is included. A "–" sign indicates that the related effect is not included in the model.

^a Form of the driving force: (a) surface reaction (Equation 3) and (c) isobutene adsorption (Equation 5). ^b First summand of the adsorption term.