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1. Introduction

Detailed information on extraction of concentration and spectral profiles of the liquid products
obtained at different experimental conditions of thermal conversion by self-modeling curve resolution
(SMCR) is provided in the manuscript. However, some sections do not require that all figures, plots and
tables be supplied in the manuscript itself, at the same time not causing difficulty for the readers in relating
to the global aim of the study. These additional details are given in this Supporting Information document.
2. Experimental

All experimental details are provided in the main manuscript.
3. Methods and parameters used

3.1 FTIR data available

All the data regarding the FTIR spectra of the liquid products from thermal conversion at different
temperatures and residence times is provided in the manuscript itself.

3.2 Pre-processed and residual data for temperatures of 420 °C, 400 °C, 380 °C, 300 °C

The FTIR spectra of liquid samples obtained after thermal conversion at 350 °C after baseline
correction and SG filtering are provided in the manuscript. The respective plots along with the residual
obtained from smoothing and the raw data for the other 4 temperatures are given in Figure S1, Figure S2,
Figure S3 and Figure S4.
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Figure S1. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid
products from thermal conversion of Athabasca bitumen at 420 °C; (c) residual after smoothing.
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Figure S2. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid
products from thermal conversion of Athabasca bitumen at 400 °C; (c) residual after smoothing.
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Figure S3. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid
products from thermal conversion of Athabasca bitumen at 380 °C; (c) residual after smoothing.
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Figure S4. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid
products from thermal conversion of Athabasca bitumen at 300 °C; (c) residual after smoothing.

3.3 SMCR-ALS and SMCR-ALS-PSO methods

To deal with some of the limitations of MCR like rotational and intensity ambiguities, datasets from
different runs and techniques are combined together into a single data matrix. A row-wise combination is
performed when the same batch of experiments is monitored by different sets of techniques like FTIR,
NMR, ESR, etc. The parent equation is illustrated in equation S1. A column-wise matrix is obtained when
multiple batches of experiments conducted at different experimental conditions are monitored by the same
technique. This is given in equation S2.

[D; D, D3 ...D, ] = C[S; Sy S3...5,1" + [E1 E; E5 ... Ep] (S1)

Dy
D,
D5

Cq
- [62] ST (S2)
Cs

Intensity ambiguity is represented by:



D = (Ck)(ST) (S3)
where k is a scalar.

Rotational ambiguity is given in equation S4 by:
D= (CTYT'ST)+E (S4)

where T is a non-singular invertible matrix that multiplies with € and whose inverse multiplies with
S. There are infinite possibilities for T in the absence of other constraints.

The ALS-optimization algorithm and the accompanying constraints is described in the manuscript.
The respective equations of the alternative minimization of the Frobenius norm of the residual are given
below:

. T2

min(||D — CST|[") (S5)
. _ eT|?

min(||D — €S™||) (S6)

Table S1 gives some of the common strategies of choosing the inertia weight parameter for velocity
updating in PSO.

Table S1. Common strategies for inertia weight employed in the PSO literature.

Type of strategy Remarks

A value between 0.7 — 1 shows lower error but larger

Constant ! o
number of iterations for convergence

Increases convergence in early stages of PSO;

Random 2 :
Gives faster overall convergence

Decreasing values in the range 0.9 — 0.4 are
Linearly decreasing ® employed but risk of local optimum exists;
Gives low error

Falls in between constant and random inertia weight
strategies; takes global and local best particle
positions into consideration but gives large error

Global-local best inertia
weight 4

As mentioned in the manuscript, ‘fmincon’ was used to further carry out a local search for the PSO-
optimized concentration profiles inside the ALS loop. The next few paragraphs discuss two algorithms used
by ‘fmincon’ for the optimization process in further detail. These are the ‘Sequential Quadratic
Programming’ algorithm and the ‘Interior Point’ algorithm. First, a nonlinear unconstrained minimization
problem of a general nature is explained, followed by the algorithms for the constrained optimization.

a. Unconstrained minimization:



Consider a scalar function f (x) whose minimum point and the corresponding value needs to be found.
Most algorithms are based on building trust regions around the neighborhood (N) for a simplified version
q of f.° The trust region sub-problem is expressed in equation S7 as:

ming(s),s €N (S7)
S

where s is a sample step that assists in updating the present position if f(x +s) < f(x).

The challenge is to define g and the trust region N. Expressing g in terms of the first two terms of the
Taylor’s expansion, the quadratic programming problem comes down to solving the equation:

min%sTHs+sTg for||Ds|| <A (S8)

In equation S8, D is the diagonal scaling matrix, A is a positive tolerance level for the constraint and
can be adjusted according to whether the updated value of f meets the inequality condition or not, H is the
square matrix of second derivatives of f (Hessian) and g is the gradient of f. A number of approaches to
solve this equation are given in the literature. 5" All these algorithms require rigorous calculations of
eigenvalues but it is easier to solve using the definition of a sub-space s that forms a boundary for the trust
region. s is constructed in the 2-D space as a combination of the gradient direction (s;) and the Newton
direction (s,), which is the solution to the following equation

H.s, = —g (S9)

The solution to equation S9, which is a system of linear equations, is given by the preconditioned
conjugate gradient (CG) method whose output direction, p is used to build the sub-space. The key step in
solving unconstrained optimization problems is determining the 2-D sub-space. It is chosen such that global
convergence is achieved through the steepest descent direction while local convergence is accomplished
through the Newton step. Nonlinear least squares and linear least squares solutions also work on similar
principles of trust regions and 2-D sub-space.

b. Constrained minimization:

Two common constraints for these kinds of problems are linear equality and box constraints. The linear
equality constrained problems are solved considering an initial point that satisfies the equality Ax, = b,
where A and b are known. A matrix system is created to calculate s and is elaborated by Coleman and
Verma. 8 Box constraints consist of lower and upper bounds and a scaled Newton step evolving from the
Karush-Kuhn-Tucker (KKT) conditions is considered to find the sub-space for solving the problem. °® The
solution also comprises of a reflection step that delineates the step size.

c. Algorithms used by ‘finincon’

Active set algorithm:



This is a medium-scale algorithm where full matrices are generated and complex linear algebra is used
to solve the constrained equations. They were based on the conversion of the constrained problem into an
unconstrained one by the use of a penalty function. The KKT conditions are necessary and sufficient for
optimality when both the objective function and the constraints are convex. The KKT conditions of the
guadratic programming problem are given as:

VFCx) + ) 20.VGi(xs) = 0
i=1

AL Gi(x) =0and A; = 0 (S10)

where A; are the Lagrange multipliers that take positive values only and serve as a link between the
objective and constraint functions. The solution revolves around finding the Lagrange multipliers for each
data point.

Sequential Quadratic Programming (SQP) algorithm:

‘fmincon’ utilizes SQP methods frequently to solve the constrained optimization problems. The
principle of SQP rests on creating quadratic programming sub-problems at each loop iteration. ° It is
analogous to the active-set algorithm explained in the previous section and instead of a Newton step used
for the unconstrained optimization (equation S9), a quasi-Newton updating procedure is used for dealing
with the Hessian matrix (H). Detailed reviews of the method are available in various texts in the literature.
11,12

The solution of the quadratic sub-problem is used to form a search direction for the variable x as:
Xp+1 = X + Qpedy (S11)

Here, d,, is the search direction and «; is the step length parameter obtained by line search. It helps
the solution to progress toward the function minimum by decreasing the value of the objective function.
Schittkowski 12 also opined that the advantage of utilizing the SQP method is that it makes the constrained
optimization converge faster than an unconstrained problem due to a fixed search area and «;. The SQP
algorithm has 4 major steps:

(1) Updating the Hessian (H, ) of the Lagrangian formulation
The Lagrangian formulation of the quadratic problem is given by the following equation:

LA, x) = f(x) + X 4 gi(x) (S12)

A quasi-Newton approximation of H(L(A, x)) is conducted at each iteration. In order to track the
convergence path in MATLAB, the ‘Display’ option can be set to ‘iter’. When this is done, messages such
as ‘Hessian modified’, ‘infeasible’ are displayed that indicate that the extent of nonlinearity is high.

(i) Solution of the QP sub-problem

The solution of this problem is executed by the active-set method described in the previous section. It
is also called a projection method. This involves primarily two steps: estimating a feasible starting point
and then generating a number of points that remain active throughout the iterations and subsequently
converge to the final solution. The active points lead to the search direction (d;, in equation S11) that is



present on the boundaries of the given constraints. This search direction facilitates the calculation of the
new point of x in the search space (equation S11). d is usually obtained through a linear combination of a
vector that is orthogonal to the active points.

Two directional choices are available for a;, during the line search procedure. One is the direct step
along d;, that would lead to the optimum of f(x) considering the active point set and thus, the solution of
the QP sub-problem. If this does not occur, further iterations are required to reach the solution. The
condition of positive Lagrange multipliers needs to be satisfied, otherwise the equality constraint is violated
and the data point corresponding to this violation is removed from the algorithm.

(iii) Finding the starting point

This can be done by finding an x that satisfies the equality constraint in the QP sub-problem. A system
of linear equations needs to be solved to obtain the initial point. The initial search direction can be obtained
by substituting d;, for s in equation S9.

(iv) Merit function and step length

A merit function proposed by Han 3 is used and a penalty parameter was introduced by Powell. ¥ The
merit function is similar to the Lagrangian function L but has more parameters. The penalty parameter
distinguishes between constraints having smaller and larger gradients and penalizes the smaller gradients
more. The step length parameter, as discussed before, reduces the merit function value.

From the implementation viewpoint, the algorithm in MATLAB allows for failed steps in the case of a
bogus value for the objective function. During the running of the algorithm, lesser memory and time is
consumed as compared to the active-set strategy though both are medium-scale algorithms. In addition, in
the case of some nonlinear constraints being violated, SQP calculates a second order approximation for the
constraints and proceeds with the iteration, though it sacrifices convergence speed.

Interior Point Algorithm:

This is the default algorithm adopted by MATLAB for the fmincon’ function. A detailed description
of this method is given by Waltz et al. ** and only the two important steps of the solution process are
described in this section. The main objective function is split into constituent small-scale optimization
problems given by equation S13:

n;isnf(x, s) = min f(x,s) — uY. In(s;) (S13)

where s; are the slack variables and i is a positive parameter that controls the barrier function )’ In(s;)

The purpose of the approximate problem is the conversion of inequality constraints to equality
constraints to make it easier for problem solving. Equation S13 can be solved by taking either of the
following 2 steps: direct step or a CG step. The KKT conditions are applied to the QP and the obtained
system of equations are tried to be solved by linear approximation. This is the first and default step
attempted by the algorithm. The CG step comes into play when the objective functions fails to remain
convex at any iteration. In either case, a merit function that combines the objective function and the
constraints is required to be decreased in value as much as possible. The algorithm can deal with constraint
violations when a particular point x; returns an unreal value for the constraint function. In this situation, the
step length is modified to a shorter value and the iteration is continued.

In the direct step, matrix factorization gives information about the Hessian. If the Hessian is not positive
definite, the algorithm attempts to solve the system of equations using the CG method. Similar to the
unconstrained minimization, CG utilizes a trust region to create a sub-space for the solution to the QP



problem. As with other cases, Lagrangian multipliers are obtained from solving KKT condition equations
to obtain the solution for the interior point algorithm. Unlike SQP, interior point algorithm is a large-scale
algorithm that does not store or generate full sized matrices and thus, lesser space is used and is the preferred

approach for computer programming.
4. Results and Discussion
4.1 Rank determination of each sub-matrix

Figure S5 gives the plots of residuals obtained after performing SVD on the 400 °C data set choosing
2 and 4 components while the manuscript gives the residual plot for SVD performed with optimal 3
components. The ROD, SD, residual after performing SVD with 3 components and the scree plots for data
sets at the other 4 temperatures (300 °C, 350 °C, 380 °C, 420 °C) are given in Figure S6, Figure S7, Figure
S8 and Figure S9 respectively.
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Figure S5. Residuals obtained after performing SVD on the 400 °C data set considering: (a) 2 components
and (b) 4 components.
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Figure S6. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c)
Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers;
(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component
in the system. These results correspond to data obtained at 300 °C.
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Figure S7. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c)
Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers;
(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component
in the system. These results correspond to data obtained at 350 °C.
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Figure S8. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c)
Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers;
(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component
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in the system. These results correspond to data obtained at 380 °C.
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Figure S9. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c)
Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers;
(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component
in the system. These results correspond to data obtained at 420 °C.

The values of performance indicators (LOF and R?) for SVD with 2, 3 and 4 pseudo-components are
given in Table S2.

Table S2. LOF and R? values (% contribution to variance) on reconstruction of the original matrix after
performing SVD for the datasets at 300 °C, 350 °C, 380 °C and 420 °C.

300°C 350 °C 380 °C 420°C
No. of 2 3 2 3 4 2 3 4 2 3 4
Components
LOF 238 | 827E-14 | 309 | 217 | 154 | 7.20 | 499 | 3.71 | 472 | 2.93 | 1.83
RZ 99.94 100 | 99.90 | 99.95 | 99.97 | 99.48 | 99.75 | 99.86 | 99.78 | 99.91 | 99.96

4.2 Initial concentration estimates




The initial estimates of concentration profiles at 300 °C are given in Figure S10.
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Figure S10. Initial concentration estimates for S, S; and S3 at 300 °C.
4.3 ALS-optimized profiles and spectra-derived quantitative parameters

The residuals obtained after subtracting the ALS-reproduced matrix from the original matrix for
datasets at all temperatures are given in Figure S11.
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Figure S11. ALS residuals for datasets obtained at: (a) 300 °C; (b) 350 °C; (c) 380 °C; (d) 400 °C; (e) 420
°C.

4.4 PSO-optimized concentration and spectral profiles

4.4.1 Results at 300 °C



The concentration and spectral profiles when the ALS-PSO algorithm was used to resolve the FTIR
spectra obtained at 300 °C for Athabasca bitumen is given in Figure S12. The residual when the reproduced
matrix from the ALS-PSO-resolved profiles is subtracted from the original data matrix is also provided in
this figure (Figure S12b). Discussion on the differences of these profiles with respect to ALS-optimized
results in terms of resolution quality and convergence speed is provided in the manuscript.
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Figure S12. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 300 °C. The profiles are arranged as: (a) concentration vs. reaction time
for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown
as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d) 1800 — 1500 cmt; (e) 1500 — 900
cmt; (f) 900 — 650 cm™.



4.4.2 Results at 350 °C

The concentration and spectral profiles when the ALS-PSO algorithm was used to resolve the FTIR
spectra obtained at 350 °C for Athabasca bitumen are given in Figure S13. The residual when the reproduced
matrix from the ALS-PSO-resolved profiles is subtracted from the original data matrix is also provided in
this figure. Discussion on the differences of these profiles from the ALS-optimized results in terms of
resolution quality and convergence speed is given in the manuscript.
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Figure S13. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 350 °C. The profiles are arranged as: (a) concentration vs. reaction time
for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown
as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d) 1800 — 1500 cmt; (e) 1500 — 900
cmt; (f) 900 — 650 cm™L.

4.4.3 Results at 380 °C



Figure S14 provides the ALS-PSO-resolved concentration and spectral profiles for the 380 °C dataset.
The residual plot when the reproduced matrix is subtracted from the original data matrix is also provided

in the figure. 3
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Figure S14. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 380 °C. The profiles are arranged as: (a) concentration vs. reaction time
for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown
as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm'%; (d) 1800 — 1500 cm'%; (e) 1500 — 900
cmt; (f) 900 — 650 cmL.



4.4.4 Results at 400 °C

Figure S15 gives the ALS-PSO resolved final profiles for the dataset obtained at 400 °C. The residual
plot when the reproduced matrix is subtracted from the original data matrix is also provided in the figure.
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Figure S15. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 400 °C. The profiles are arranged as: (a) concentration vs. reaction time
for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shows
as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm'%; (d) 1800 — 1500 cm'%; (e) 1500 — 900
cmt; (f) 900 — 650 cmL.



445 Results at 420 °C

Figure S16 provides the concentration and spectral profiles for the ALS-PSO optimized profiles
including the residual obtained when the reproduced data matrix is subtracted from the original matrix.
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Figure S16. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 420 °C. The profiles are arranged as: (a) concentration vs. reaction time
for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shows
as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm'*; (d) 1800 — 1500 cm'%; (e) 1500 — 900
cmt; (f) 900 — 650 cmL.



4.4.6 Comparison of ALS and ALS-PSO methods
The results and corresponding discussion of this section are provided in the manuscript itself.
4.5 ALS-optimized profiles for the global model
Figure S17 provides the plots for the ROD and initial concentration estimates obtained through EFA

for the 35 samples when the augmented matrix consisting of all temperatures and respective reaction times
was used for SMCR analysis.
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Figure S17. Plots of: (a) ROD vs. number of components and (b) initial estimates of concentration obtained
through EFA for the 35 samples at various process conditions used in the SMCR-ALS global model.

References

1. Shi Y, Eberhart R. A modified particle swarm optimizer. In: 1998 IEEE International Conference on
Evolutionary Computation Proceedings IEEE World Congress on Computational Intelligence (Cat
N098TH8360). Anchorage, AK: IEEE; 2002. p. 69-73.

2. Eberhart RC, Yuhui Shi. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of
the 2001 Congress on Evolutionary Computation (IEEE Cat No01TH8546). Seoul: IEEE; 2002. p. 94-100.

3. Xin J, Chen G, Hai Y. A Particle Swarm Optimizer with Multi-stage Linearly-Decreasing Inertia Weight. In:
2009 International Joint Conference on Computational Sciences and Optimization. Sanya, China: IEEE; 20009.
p. 505-8.

4, Arumugam MS, Rao MVC. On the performance of the particle swarm optimization algorithm with various

inertia weight variants for computing optimal control of a class of hybrid systems. Discret Dyn Nat Soc.
2006;2006:1-17.

5. Moré JJ, Sorensen DC. Computing a Trust Region Step. SIAM J Sci Stat Comput. 1983 Sep;4:553-72.

6. Steihaug T. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM J Numer
Anal. 1983 Jun;20:626-37.

7. Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region problem by minimization over
two-dimensional subspaces. Math Program. 1988 Jan;40-40:247-63.
8. Coleman TF, Verma A. A Preconditioned Conjugate Gradient Approach to Linear Equality Constrained

Minimization. Comput Optim Appl. 2001;20:61-72.



10.

11.
12.

13.

14,

15.

Wu HC. The Karush—-Kuhn-Tucker optimality conditions in multiobjective programming problems with
interval-valued objective functions. Eur J Oper Res. 2008;196:49-60.

Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector
Machines. River Edge, NJ: World Scientific; 2002.

Fletcher R. Practical Methods of Optimization. New York: John Wiley & Sons; 1987.

Schittkowski K. NLPQL.: A fortran subroutine solving constrained nonlinear programming problems. Ann
Oper Res. 1986 Jun;5:485-500.

Han SP. A globally convergent method for nonlinear programming. J Optim Theory Appl. 1977 Jul;22:297—
309.

Powell MJ. A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis.
Berlin, Heidelberg: Springer; 1978. p. 144-57.

Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that combines
line search and trust region steps. Math Program. 2006 Jul 25;107:391-408.



