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1. Introduction 

 

Detailed information on extraction of concentration and spectral profiles of the liquid products 

obtained at different experimental conditions of thermal conversion by self-modeling curve resolution 

(SMCR) is provided in the manuscript. However, some sections do not require that all figures, plots and 

tables be supplied in the manuscript itself, at the same time not causing difficulty for the readers in relating 

to the global aim of the study. These additional details are given in this Supporting Information document.   

 

2. Experimental  

 

All experimental details are provided in the main manuscript. 

 

3. Methods and parameters used 

 

3.1 FTIR data available 

 

All the data regarding the FTIR spectra of the liquid products from thermal conversion at different 

temperatures and residence times is provided in the manuscript itself.  

 

3.2 Pre-processed and residual data for temperatures of 420 ˚C, 400 ˚C, 380 ˚C, 300 ˚C 

 

The FTIR spectra of liquid samples obtained after thermal conversion at 350 ºC after baseline 

correction and SG filtering are provided in the manuscript. The respective plots along with the residual 

obtained from smoothing and the raw data for the other 4 temperatures are given in Figure S1, Figure S2, 

Figure S3 and Figure S4.  
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                                        (a)                                                                        (b) 
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Figure S1. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid 

products from thermal conversion of Athabasca bitumen at 420 ºC; (c) residual after smoothing.  
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Figure S2. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid 

products from thermal conversion of Athabasca bitumen at 400 ºC; (c) residual after smoothing. 
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Figure S3. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid 

products from thermal conversion of Athabasca bitumen at 380 ºC; (c) residual after smoothing. 
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Figure S4. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the liquid 

products from thermal conversion of Athabasca bitumen at 300 ºC; (c) residual after smoothing.  

 

3.3 SMCR-ALS and SMCR-ALS-PSO methods 

 

To deal with some of the limitations of MCR like rotational and intensity ambiguities, datasets from 

different runs and techniques are combined together into a single data matrix. A row-wise combination is 

performed when the same batch of experiments is monitored by different sets of techniques like FTIR, 

NMR, ESR, etc. The parent equation is illustrated in equation S1. A column-wise matrix is obtained when 

multiple batches of experiments conducted at different experimental conditions are monitored by the same 

technique. This is given in equation S2.  

                [𝐷1 𝐷2 𝐷3 … 𝐷𝑛] = 𝐶[𝑆1 𝑆2 𝑆3 … 𝑆𝑛]𝑇 + [𝐸1 𝐸2 𝐸3 … . 𝐸𝑛]                                                (S1) 

 

                                                       [
𝐷1

𝐷2

𝐷3

] = [

𝐶1

𝐶2

𝐶3

] 𝑆𝑇                                                                             (S2) 

 

Intensity ambiguity is represented by: 



                                                     𝐷 = (𝐶𝑘)(𝑆𝑇 1

𝑘
)                                                                             (S3) 

where 𝑘 is a scalar. 

 

Rotational ambiguity is given in equation S4 by: 

 

                                              𝐷 = (𝐶𝑇)(𝑇−1𝑆𝑇) + 𝐸                                                                         (S4) 

 

where 𝑇 is a non-singular invertible matrix that multiplies with 𝐶 and whose inverse multiplies with 

𝑆. There are infinite possibilities for 𝑇 in the absence of other constraints. 

 

The ALS-optimization algorithm and the accompanying constraints is described in the manuscript. 

The respective equations of the alternative minimization of the Frobenius norm of the residual are given 

below: 

                                                min
𝑆≥0

(||𝐷 − 𝐶𝑆𝑇||
2

)                                                                                   (S5) 

                                                min
𝐶≥0

(||𝐷 − 𝐶𝑆𝑇||
2

)                                                                             (S6) 

 

Table S1 gives some of the common strategies of choosing the inertia weight parameter for velocity 

updating in PSO.  

 

Table S1. Common strategies for inertia weight employed in the PSO literature. 

 

Type of strategy Remarks 

Constant 1 
A value between 0.7 – 1 shows lower error but larger 

number of iterations for convergence 

Random 2  
Increases convergence in early stages of PSO;  

Gives faster overall convergence 

Linearly decreasing 3 

Decreasing values in the range 0.9 – 0.4 are 

employed but risk of local optimum exists; 

Gives low error  

Global-local best inertia 

weight 4 

Falls in between constant and random inertia weight 

strategies; takes global and local best particle 

positions into consideration but gives large error 

 

As mentioned in the manuscript, ‘fmincon’ was used to further carry out a local search for the PSO-

optimized concentration profiles inside the ALS loop. The next few paragraphs discuss two algorithms used 

by ‘fmincon’ for the optimization process in further detail. These are the ‘Sequential Quadratic 

Programming’ algorithm and the ‘Interior Point’ algorithm. First, a nonlinear unconstrained minimization 

problem of a general nature is explained, followed by the algorithms for the constrained optimization. 

 

a. Unconstrained minimization: 

 



Consider a scalar function 𝑓(𝑥) whose minimum point and the corresponding value needs to be found. 

Most algorithms are based on building trust regions around the neighborhood (𝑁) for a simplified version 

𝑞 of 𝑓. 5 The trust region sub-problem is expressed in equation S7 as: 

 

                                                              min
𝑠

𝑞(𝑠) , 𝑠 ∈ 𝑁                                                                           (S7) 

 

where s is a sample step that assists in updating the present position if 𝑓(𝑥 + 𝑠) < 𝑓(𝑥). 

 

The challenge is to define 𝑞 and the trust region 𝑁. Expressing 𝑞 in terms of the first two terms of the 

Taylor’s expansion, the quadratic programming problem comes down to solving the equation:  

 

                                                  min
1

2
𝑠𝑇𝐻𝑠 + 𝑠𝑇𝑔 for ||𝐷𝑠|| ≤ ∆                                                           (S8) 

 

In equation S8, 𝐷 is the diagonal scaling matrix, ∆ is a positive tolerance level for the constraint and 

can be adjusted according to whether the updated value of 𝑓 meets the inequality condition or not, 𝐻 is the 

square matrix of second derivatives of 𝑓 (Hessian) and 𝑔 is the gradient of 𝑓.  A number of approaches to 

solve this equation are given in the literature. 6,7 All these algorithms require rigorous calculations of 

eigenvalues but it is easier to solve using the definition of a sub-space 𝑠 that forms a boundary for the trust 

region. 𝑠 is constructed in the 2-D space as a combination of the gradient direction (𝑠1) and the Newton 

direction (𝑠2), which is the solution to the following equation 

                                                                  𝐻. 𝑠2 = −𝑔                                                                         (S9) 

 

The solution to equation S9, which is a system of linear equations, is given by the preconditioned 

conjugate gradient (CG) method whose output direction, 𝑝 is used to build the sub-space. The key step in 

solving unconstrained optimization problems is determining the 2-D sub-space. It is chosen such that global 

convergence is achieved through the steepest descent direction while local convergence is accomplished 

through the Newton step. Nonlinear least squares and linear least squares solutions also work on similar 

principles of trust regions and 2-D sub-space.  

 

b. Constrained minimization: 

 

Two common constraints for these kinds of problems are linear equality and box constraints. The linear 

equality constrained problems are solved considering an initial point that satisfies the equality 𝐴𝑥0  =  𝑏, 

where 𝐴 and 𝑏 are known. A matrix system is created to calculate 𝑠 and is elaborated by Coleman and 

Verma. 8 Box constraints consist of lower and upper bounds and a scaled Newton step evolving from the 

Karush-Kuhn-Tucker (KKT) conditions is considered to find the sub-space for solving the problem. 9 The 

solution also comprises of a reflection step that delineates the step size.  

 

c. Algorithms used by ‘fmincon’ 

 

Active set algorithm: 

 



This is a medium-scale algorithm where full matrices are generated and complex linear algebra is used 

to solve the constrained equations. They were based on the conversion of the constrained problem into an 

unconstrained one by the use of a penalty function. The KKT conditions are necessary and sufficient for 

optimality when both the objective function and the constraints are convex. The KKT conditions of the 

quadratic programming problem are given as:  

∇𝑓(𝑥𝑠) + ∑ 𝜆𝑖.

𝑚

𝑖=1

∇Gi(𝑥𝑠) = 0 

                                                        λi. Gi(𝑥𝑠) = 0 and 𝜆𝑖 ≥ 0                                                            (S10) 

 

where 𝜆𝑖 are the Lagrange multipliers that take positive values only and serve as a link between the 

objective and constraint functions. The solution revolves around finding the Lagrange multipliers for each 

data point.  

 

Sequential Quadratic Programming (SQP) algorithm: 

 

‘fmincon’ utilizes SQP methods frequently to solve the constrained optimization problems. The 

principle of SQP rests on creating quadratic programming sub-problems at each loop iteration. 10 It is 

analogous to the active-set algorithm explained in the previous section and instead of a Newton step used 

for the unconstrained optimization (equation S9), a quasi-Newton updating procedure is used for dealing 

with the Hessian matrix (𝐻). Detailed reviews of the method are available in various texts in the literature. 
11,12  

The solution of the quadratic sub-problem is used to form a search direction for the variable 𝑥 as: 

 

                                                         𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                                        (S11) 

 

Here, 𝑑𝑘 is the search direction and 𝛼𝑘 is the step length parameter obtained by line search. It helps 

the solution to progress toward the function minimum by decreasing the value of the objective function. 

Schittkowski 12 also opined that the advantage of utilizing the SQP method is that it makes the constrained 

optimization converge faster than an unconstrained problem due to a fixed search area and 𝛼𝑘. The SQP 

algorithm has 4 major steps: 

(i) Updating the Hessian (𝐻𝑘) of the Lagrangian formulation  

The Lagrangian formulation of the quadratic problem is given by the following equation: 

 

                                                 𝐿(𝜆, 𝑥) = 𝑓(𝑥) + ∑ 𝜆𝑖. 𝑔𝑖(𝑥)                                                                     (S12) 

 

A quasi-Newton approximation of 𝐻(𝐿(𝜆, 𝑥)) is conducted at each iteration. In order to track the 

convergence path in MATLAB, the ‘Display’ option can be set to ‘iter’. When this is done, messages such 

as ‘Hessian modified’, ‘infeasible’ are displayed that indicate that the extent of nonlinearity is high.  

(ii) Solution of the QP sub-problem 

The solution of this problem is executed by the active-set method described in the previous section. It 

is also called a projection method. This involves primarily two steps: estimating a feasible starting point 

and then generating a number of points that remain active throughout the iterations and subsequently 

converge to the final solution. The active points lead to the search direction (𝑑𝑘 in equation S11) that is 



present on the boundaries of the given constraints. This search direction facilitates the calculation of the 

new point of 𝑥 in the search space (equation S11). 𝑑𝑘 is usually obtained through a linear combination of a 

vector that is orthogonal to the active points.  

 Two directional choices are available for 𝛼𝑘 during the line search procedure. One is the direct step 

along 𝑑𝑘 that would lead to the optimum of 𝑓(𝑥) considering the active point set and thus, the solution of 

the QP sub-problem. If this does not occur, further iterations are required to reach the solution. The 

condition of positive Lagrange multipliers needs to be satisfied, otherwise the equality constraint is violated 

and the data point corresponding to this violation is removed from the algorithm.  

(iii) Finding the starting point 

This can be done by finding an 𝑥 that satisfies the equality constraint in the QP sub-problem. A system 

of linear equations needs to be solved to obtain the initial point. The initial search direction can be obtained 

by substituting 𝑑𝑘 for 𝑠 in equation S9. 

(iv) Merit function and step length  

A merit function proposed by Han 13 is used and a penalty parameter was introduced by Powell. 14 The 

merit function is similar to the Lagrangian function 𝐿 but has more parameters. The penalty parameter 

distinguishes between constraints having smaller and larger gradients and penalizes the smaller gradients 

more. The step length parameter, as discussed before, reduces the merit function value.  

From the implementation viewpoint, the algorithm in MATLAB allows for failed steps in the case of a 

bogus value for the objective function. During the running of the algorithm, lesser memory and time is 

consumed as compared to the active-set strategy though both are medium-scale algorithms. In addition, in 

the case of some nonlinear constraints being violated, SQP calculates a second order approximation for the 

constraints and proceeds with the iteration, though it sacrifices convergence speed.  

 

Interior Point Algorithm: 

 

This is the default algorithm adopted by MATLAB for the ‘fmincon’ function. A detailed description 

of this method is given by Waltz et al. 15 and only the two important steps of the solution process are 

described in this section. The main objective function is split into constituent small-scale optimization 

problems given by equation S13: 

                                           min
𝑥,𝑠

𝑓(𝑥, 𝑠) = min 𝑓(𝑥, 𝑠) − µ ∑ ln (𝑠𝑖)                                                 (S13) 

 

where 𝑠𝑖 are the slack variables and µ is a positive parameter that controls the barrier function ∑ ln (𝑠𝑖) 

The purpose of the approximate problem is the conversion of inequality constraints to equality 

constraints to make it easier for problem solving. Equation S13 can be solved by taking either of the 

following 2 steps: direct step or a CG step. The KKT conditions are applied to the QP and the obtained 

system of equations are tried to be solved by linear approximation. This is the first and default step 

attempted by the algorithm. The CG step comes into play when the objective functions fails to remain 

convex at any iteration. In either case, a merit function that combines the objective function and the 

constraints is required to be decreased in value as much as possible. The algorithm can deal with constraint 

violations when a particular point 𝑥𝑗 returns an unreal value for the constraint function. In this situation, the 

step length is modified to a shorter value and the iteration is continued.  

In the direct step, matrix factorization gives information about the Hessian. If the Hessian is not positive 

definite, the algorithm attempts to solve the system of equations using the CG method. Similar to the 

unconstrained minimization, CG utilizes a trust region to create a sub-space for the solution to the QP 



problem. As with other cases, Lagrangian multipliers are obtained from solving KKT condition equations 

to obtain the solution for the interior point algorithm. Unlike SQP, interior point algorithm is a large-scale 

algorithm that does not store or generate full sized matrices and thus, lesser space is used and is the preferred 

approach for computer programming.  

 

4. Results and Discussion 

 

4.1 Rank determination of each sub-matrix 

 

Figure S5 gives the plots of residuals obtained after performing SVD on the 400 ºC data set choosing 

2 and 4 components while the manuscript gives the residual plot for SVD performed with optimal 3 

components. The ROD, SD, residual after performing SVD with 3 components and the scree plots for data 

sets at the other 4 temperatures (300 ºC, 350 ºC, 380 ºC, 420 ºC) are given in Figure S6, Figure S7, Figure 

S8 and Figure S9 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

                                     (a)                                                                          (b) 

Figure S5. Residuals obtained after performing SVD on the 400 ºC data set considering: (a) 2 components 

and (b) 4 components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

  

 

 

 

 

 

 

                                     (a)                                                                           (b)               

 

 

 

 

 

 

 

 

 

 

 

                                    (c)                                                                           (d) 

 

Figure S6. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c) 

Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers; 

(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component 

in the system. These results correspond to data obtained at 300 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

                                  (a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 

 

                                  (c)                                                                            (d) 

 

Figure S7. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c) 

Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers; 

(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component 

in the system. These results correspond to data obtained at 350 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

                             

           (a)                                                                      (b) 

  

 

 

 

 

 

 

 

 

 

 

 

                                     (c)                                                                      (d) 

 

Figure S8. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c) 

Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers; 

(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component 

in the system. These results correspond to data obtained at 380 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

                                    (a)                                                                        (b) 

 

 

 

 

 

 

 

 

 

 

 

                                       (c)                                                                          (d) 

 

Figure S9. Plots for (a) ROD with respect to each component; (b) SD with respect to each component; (c) 

Residual after performing SVD considering 3 components on the FTIR data set for all 1738 wavenumbers; 

(d) Percentage contribution to the variance explained by the eigenvalues corresponding to each component 

in the system. These results correspond to data obtained at 420 ºC.  

 

The values of performance indicators (LOF and 𝑅2) for SVD with 2, 3 and 4 pseudo-components are 

given in Table S2. 

 

Table S2. LOF and 𝑅2 values (% contribution to variance) on reconstruction of the original matrix after 

performing SVD for the datasets at 300 ºC, 350 ºC, 380 ºC and 420 ºC. 

 

 300 ºC 350 ºC 380 ºC 420 ºC 

No. of 

components 
2 3 2 3 4 2 3 4 2 3 4 

LOF 2.38 8.27E-14 3.09 2.17 1.54 7.20 4.99 3.71 4.72 2.93 1.83 

𝑹𝟐 99.94 100 99.90 99.95  99.97 99.48 99.75 99.86 99.78 99.91 99.96 

 

4.2 Initial concentration estimates 

 



The initial estimates of concentration profiles at 300 ºC are given in Figure S10.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. Initial concentration estimates for S1, S2 and S3 at 300 ºC.  

 

4.3 ALS-optimized profiles and spectra-derived quantitative parameters  

 

The residuals obtained after subtracting the ALS-reproduced matrix from the original matrix for 

datasets at all temperatures are given in Figure S11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

                               (a)                                                                        (b) 

  

 

 

 

 

 

 

 

 

 

 

                                     (c)                                                                 (d) 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (e) 

Figure S11. ALS residuals for datasets obtained at: (a) 300 ºC; (b) 350 ºC; (c) 380 ºC; (d) 400 ºC; (e) 420 

ºC. 

 

4.4 PSO-optimized concentration and spectral profiles 

 

4.4.1 Results at 300 ºC 

 



The concentration and spectral profiles when the ALS-PSO algorithm was used to resolve the FTIR 

spectra obtained at 300 ºC for Athabasca bitumen is given in Figure S12. The residual when the reproduced 

matrix from the ALS-PSO-resolved profiles is subtracted from the original data matrix is also provided in 

this figure (Figure S12b). Discussion on the differences of these profiles with respect to ALS-optimized 

results in terms of resolution quality and convergence speed is provided in the manuscript.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

(a)                                                                          (b) 

 

 

 

 

 

 

 

 

 

 

 

 

                                    (c)                                                                         (d) 

  

 

 

 

 

 

 

 

 

 

 

 

                                     (e)                                                                          (f) 

Figure S12. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal 

conversion of Athabasca bitumen at 300 ºC. The profiles are arranged as: (a) concentration vs. reaction time 

for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown 

as absorbance vs. wavenumber in the ranges: (c) 3200 – 2750 cm-1; (d) 1800 – 1500 cm-1; (e) 1500 – 900 

cm-1; (f) 900 – 650 cm-1.  

 



4.4.2 Results at 350 ºC 

 

The concentration and spectral profiles when the ALS-PSO algorithm was used to resolve the FTIR 

spectra obtained at 350 ºC for Athabasca bitumen are given in Figure S13. The residual when the reproduced 

matrix from the ALS-PSO-resolved profiles is subtracted from the original data matrix is also provided in 

this figure. Discussion on the differences of these profiles from the ALS-optimized results in terms of 

resolution quality and convergence speed is given in the manuscript.  
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                                       (c)                                                              (d) 

 

 

 

 

 

 

 

 

 

 

                                  (e)                                                                     (f) 

Figure S13. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal 

conversion of Athabasca bitumen at 350 ºC. The profiles are arranged as: (a) concentration vs. reaction time 

for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown 

as absorbance vs. wavenumber in the ranges: (c) 3200 – 2750 cm-1; (d) 1800 – 1500 cm-1; (e) 1500 – 900 

cm-1; (f) 900 – 650 cm-1. 

 

4.4.3 Results at 380 ºC 

 

 



 

Figure S14 provides the ALS-PSO-resolved concentration and spectral profiles for the 380 ºC dataset. 

The residual plot when the reproduced matrix is subtracted from the original data matrix is also provided 

in the figure.  
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                                (e)                                                                      (f) 

Figure S14. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal 

conversion of Athabasca bitumen at 380 ºC. The profiles are arranged as: (a) concentration vs. reaction time 

for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shown 

as absorbance vs. wavenumber in the ranges: (c) 3200 – 2750 cm-1; (d) 1800 – 1500 cm-1; (e) 1500 – 900 

cm-1; (f) 900 – 650 cm-1. 



 

4.4.4 Results at 400 ºC 

 

Figure S15 gives the ALS-PSO resolved final profiles for the dataset obtained at 400 ºC. The residual 

plot when the reproduced matrix is subtracted from the original data matrix is also provided in the figure. 
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                                    (e)                                                                        (f) 

 

Figure S15. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal 

conversion of Athabasca bitumen at 400 ºC. The profiles are arranged as: (a) concentration vs. reaction time 

for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shows 

as absorbance vs. wavenumber in the ranges: (c) 3200 – 2750 cm-1; (d) 1800 – 1500 cm-1; (e) 1500 – 900 

cm-1; (f) 900 – 650 cm-1.  



 

4.4.5 Results at 420 ºC 

 

Figure S16 provides the concentration and spectral profiles for the ALS-PSO optimized profiles 

including the residual obtained when the reproduced data matrix is subtracted from the original matrix.  
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                                  (c)                                                                         (d) 

  

 

 

 

 

 

 

 

 

 

  

                                 (e)                                                                          (f) 

 

Figure S16. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal 

conversion of Athabasca bitumen at 420 ºC. The profiles are arranged as: (a) concentration vs. reaction time 

for the three pseudo-components; (b) residual plot; and resolved spectra for each pseudo-component shows 

as absorbance vs. wavenumber in the ranges: (c) 3200 – 2750 cm-1; (d) 1800 – 1500 cm-1; (e) 1500 – 900 

cm-1; (f) 900 – 650 cm-1.  



 

4.4.6 Comparison of ALS and ALS-PSO methods 

 

The results and corresponding discussion of this section are provided in the manuscript itself.  

 

4.5 ALS-optimized profiles for the global model  

 

Figure S17 provides the plots for the ROD and initial concentration estimates obtained through EFA 

for the 35 samples when the augmented matrix consisting of all temperatures and respective reaction times 

was used for SMCR analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       (a)                                                                             (b) 

Figure S17. Plots of: (a) ROD vs. number of components and (b) initial estimates of concentration obtained 

through EFA for the 35 samples at various process conditions used in the SMCR-ALS global model.  
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